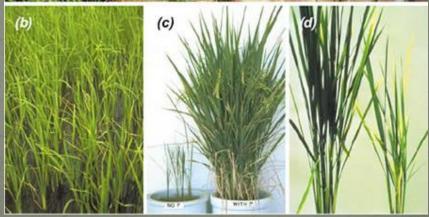
Phosphorus Deficiencies in Rice: Causes and Cures

Dustin L. Harrell

Why is phosphorus important?


- Nucleic acids
- Many metabolic functions w/in plant:
 - **Energy storage and transfer**
- Has been shown to promote:
 - Increased root growth
 - **Early maturity**
 - Increased straw strength
 - Crop quality
 - Disease resistance

Identifying P deficiencies in rice

- DIFFICULT
 - Hidden hunger
- Leaves/stems:
 - "dirty dark green" purplish tint (anthocyanin)
- Tillering reduced
- Stunted/small/erect plants
- Slender stalks
- Grow/mature slowly
- death of older leaves
- Soil TestingPlant Analysis

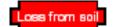
Source: Crop, Soil, and Water Sciences Division at IRRI

Rice - P

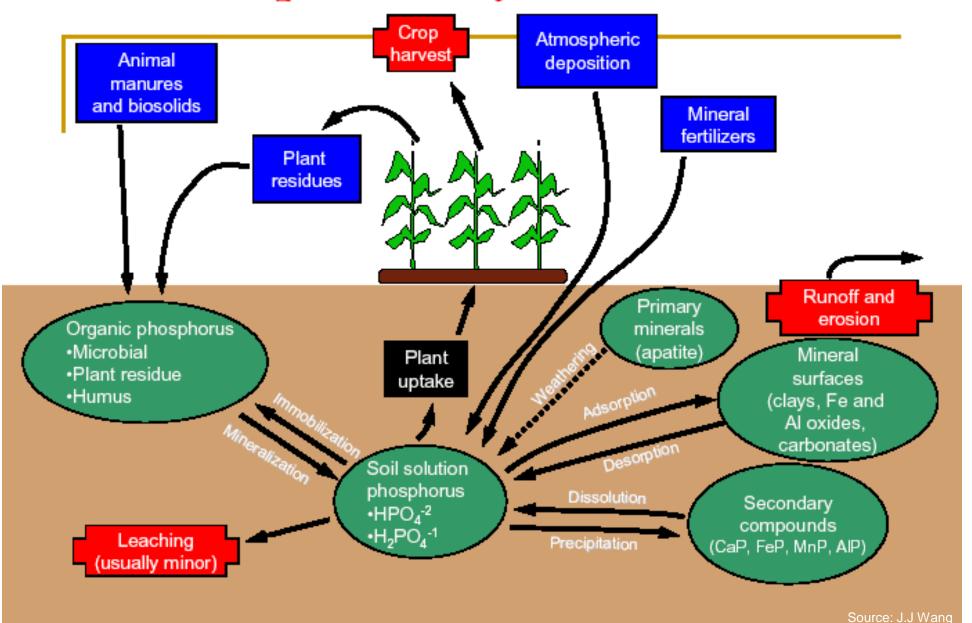
P-deficiency 14 DAF Source T. M. Walker

P-deficiency 14 DAF

Stunted, dead rice plants, caused by P deficiency

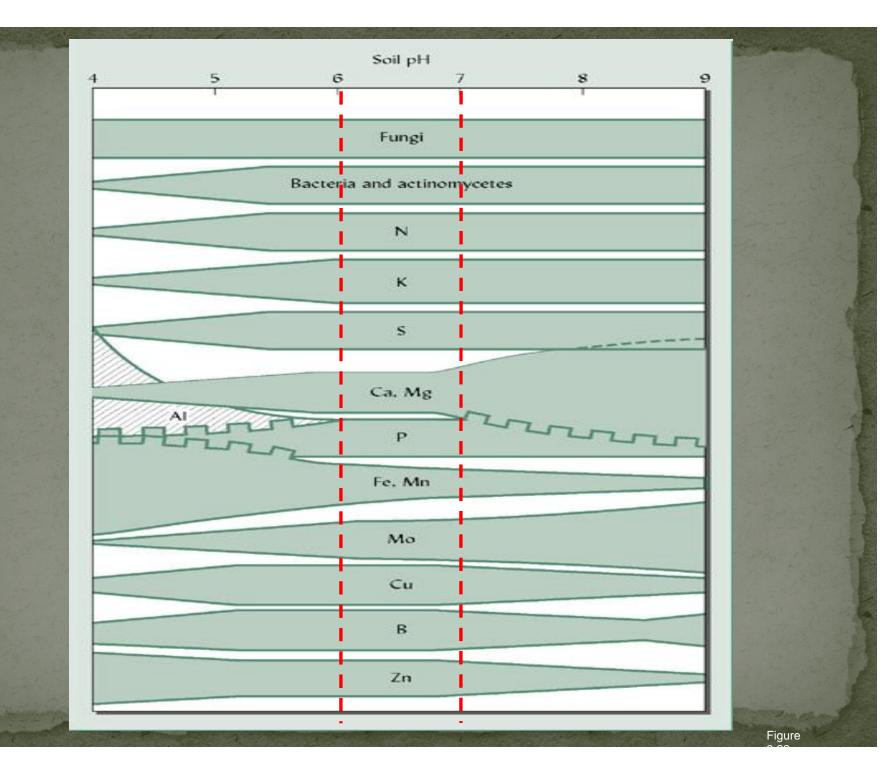
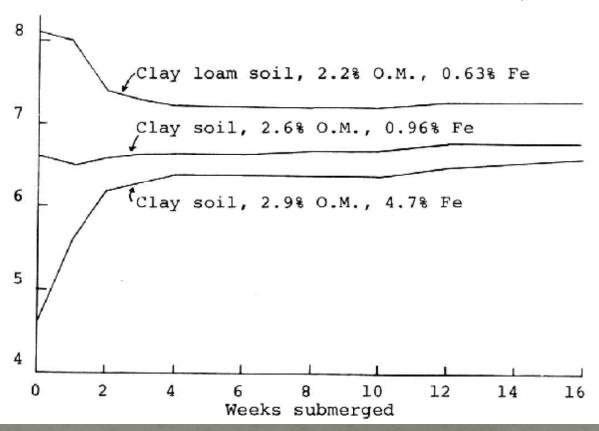

Source: D. M. Brandon

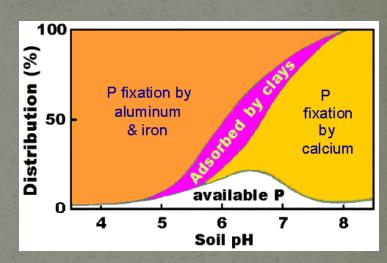
Premature necrosis of rice leaves due to P deficiency

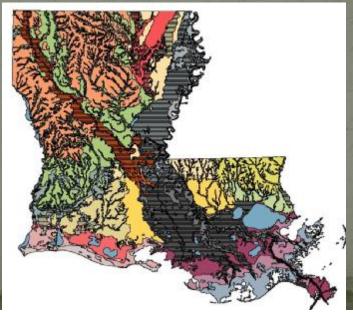


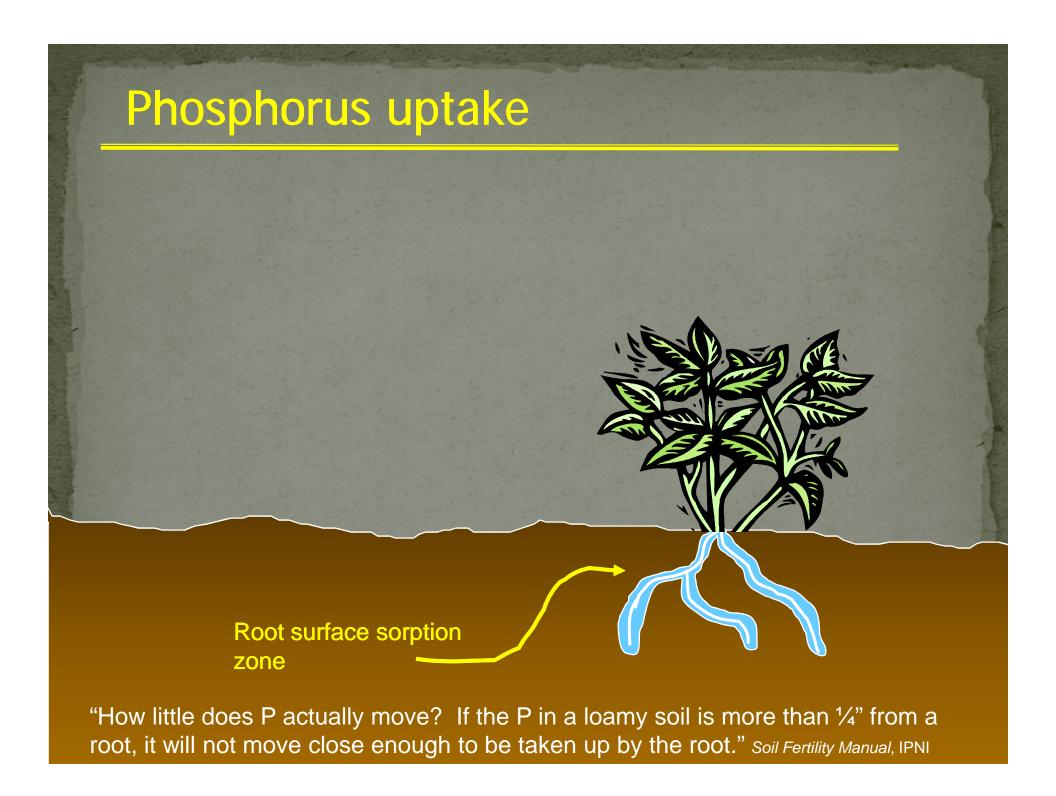
Source: B.R. Wells, B.A. Huey, R.J. Norman, S. Helms

The Phosphorus Cycle

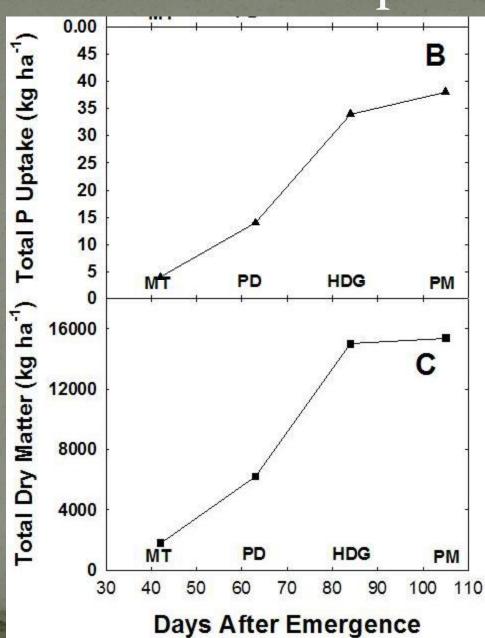




Figure 1. Effect of blooding on soil pH





Phosphorus availability in rice soils


- Acid soils:
 - Fe and Al-P
 - Permanent flood
 - **–** ↑pH
 - ↑ P availability
- Calcareous soils:
 - Ca-P
 - Permanent flood
 - **–** ↓**p**H
 - P availability slightly increased

When does rice take up P

Does the timing of P applications make a difference?

- Not as important as N
 - Pre-flood as effective as preplant applications
 - Pre-flood apps can actually save money
- For soils with severe P def.
 - Splitting 50% pre-plant and 50% pre-flood have been utilized successfully

TABLE 3.4.7. Influence of P Application Timing on Rice Grain Yields

	Rice Grain Yield (kg/ha)				
Time of P Application	Davis Farm		Wimpy Farm		
	1997	1998	1997	1998	
Control Preemerge Preflood Postflood (7 days) Panicle differentiation LSD _{0.05}	6372	7222	7665	6953	
	7656	7561	8196	6760	
	7204	7868	8579	7011	
	7914	7839	9416	6873	
	6612	7420	8198	6713	
	806	512	574	n.s.	
Soil test P (kg/ha) Soil pH	10	17	28	20	
	7.6	6.8	8.0	7.7	

Source: Data from Wilson et al. (1999).

Can I cut back (skip) on P fertilizer?

- Base P fertilizer decisions on recent soil test results.
- Apply at recommended rates :
 - 0 60 lb/A P_2O_5

A 7000 lb/A rice crop takes up 60 lb/A P_2O_5 . (grain \approx 42 lb/A; straw \approx 18 lb/A)

What should I do when I see plant deficiency symptoms?

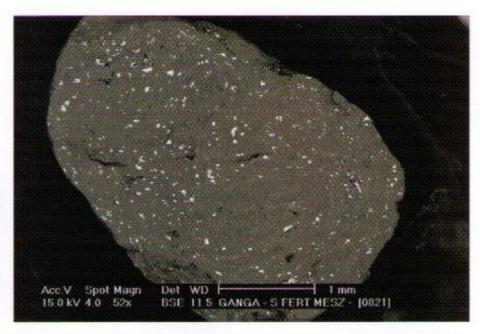
Make sure P is the problem: Plant analysis

- 1. Sample both healthy and deficient rice plants
- 2. Send to LSU AgCenter STPAL
- 3. Review laboratory results:
 - Whole plant:
 - <0.15% @ mid-tillering
- 4. If needed, apply salvage P application

What P sources are available?

- Triple super phosphate (TSP)
 - **-** 0-46-0
 - \$455 / ton
 - $\$0.49 / lb P_2O_5$
 - **–** @ 60 lb rate: \$29.40 / A

- Diammonium phosphate (DAP)
 - **-** 18-46-0
 - \$492 / ton
 - \$0.53 / lb P₂O₅
 - @ 60 lb rate: \$31.80 / A
 - Plus 10.8 lb N / A
 - (\$0.22 lb / N as compared to \$0.47 for urea N)
 - Good starter fertilizer



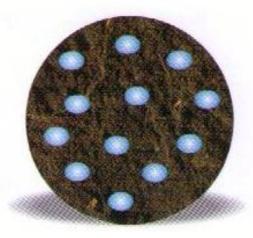
New composite fertilizer available

MicroEssentials™ SZ

- -12% N
- $-40\% P_2O_5$
- 10% S
- -1% Zn

Backscattered electron cross sectional image of MicroEssentials SZ

Granules showing sulfur distribution in white.


Distribution of S and Zn the advantage

Typical Zinc Blend

Zinc as granules in bulk blend through broadcast application (5 lbs/A Zn).

MicroEssentials SZ

Zinc incorporated in phosphate fertilizer (65 lbs/A P₂O₅ and 1.6 lbs/A Zn).

Cost comparison

MicroEssentialsTM SZ

- -12% N
- $-40\% P_2O_5$
- 10% S
- -1% Zn
- Cost $\approx $422/\text{ton}$ - 20 lb Zn, 200 lb S

DAP

- -18% N
- -46% P

- Cost ≈ \$492/ton

AVAIL for **GRANULAR** Phosphate Fertilizers

Polymer coating

- charge

Ca, Fe, Mg, Al...

9.46 LITERS/2.5 GALLONS

Trial ID: 7405 Location: Drew

Eccation: Brew						
Crop Code	ORYSA					
Crop ∀ariety	CL161					
Part Rated	GRAIN					
Rating Data Type	YIELD					
Rating Unit	LB/A					
Rating Date	16/Sep/05					
Trt Treatment Rate						
No. Name Rate Unit						
01 UTC	6978.2 b					
02 10-34-0	7538.3 a					
03 10-34-0	7461.2 a					
0.5% AVAIL v/v						
04 10-34-0	7504.1 a					
1.0% AVAIL v/v						
05 10-34-0	7312.8 a					
1.5% AVAIL v/v						
LSD (P=.05)	280.40					
Standard Deviation	181.99					
CV	2.47					
Grand Mean	7358.92					
Replicate F	4.237					
Replicate Prob(F)	0.0294					
Treatment F	6.364					
Treatment Prob(F)	0.0055					

Means followed by same letter do not significantly differ (P=.05, LSD)

6 site years... no response

Table 2. Soybean seed yield as affected by P source and P application rate for a P fertilization trial in Poinsett County, AR.

P Fertilizer	P application rate (lb P ₂ O ₅ /acre)					
Source	0	50	100	150	Source mean	
	Bushels/acre (13% moisture)					
UTC	58.6†				58.6	
Polymer MAP		63.6	65.2	65.3	64.6	
MAP		63.9	65.6	73.5	67.3	
Rate Mean	58.6	63.7	65.4	69.4		
C.V., %			8.0			
Source P-value	e, 0.1149	Rate P-val	ue, 0.0564	Interaction	P-value, 0.1332	

[†] n = 12, yields averaged across two controls that received 0 or 30 lb N/acre as urea.

Response of Rice Yields to Phosphorus Fertilizer Rates and Polymer Coating

David J. Dunn and **Gene Stevens**, Missouri Agricultural Experiment Station, Delta Research Center, University of Missouri, Portageville 63873

Table 2. Effect of phosphorus rate using triple super phosphate (TSP) and polymer coating on rice yield and net return averaged across years at Qulin, MO.

P rate	Yield (bu/acre)*		Net return (\$/acre)	
(P ₂ O ₅ , lb/acre)	TSP	TSP + polymer	TSP	TSP + polymer
0	134 d	_	603 c	_
25	143 c	150 ab	637 b	668 a
50	149 bc	151 ab	658 ab	666 a
100	154 a	154 a	668 a	665 a

^{*} Yield values followed by the same letter were not significantly different at the P = 0.1 level.

