Billet Planting Update (and some rust info)

Jeff Hoy Plant Pathology and Crop Physiology

Planting = STRESS

Planting = STRESS

Billet Planting Easy = Less Stress

Billet Planting Easy = Less Stress **Higher Cost** More Risk

Problem: Less stalk to rot

• Billet plantings suffer more from any problem

- Billet plantings suffer more from any problem
- Need high seed rate to insure against stand failure

- Billet plantings suffer more from any problem
- Need high seed rate to insure against stand failure
- Good planting practices ESSENTIAL

- Billet plantings suffer more from any problem
- Need high seed rate to insure against stand failure
- Good planting practices ESSENTIAL
- Well planted billets + no stress = comparable yield

- Billet plantings suffer more from any problem
- Need high seed rate to insure against stand failure
- Good planting practices ESSENTIAL
- Well planted billets + no stress = comparable yield
- Basic breeding for stalk rot resistance
 underway

- Billet plantings suffer more from any problem
- Need high seed rate to insure against stand failure
- Good planting practices ESSENTIAL
- Well planted billets + no stress = comparable yield
- Basic breeding for stalk rot resistance underway

- Billet plantings suffer more from any problem
- Need high seed rate to insure against stand failure
- Good planting practices ESSENTIAL
- Well planted billets + no stress = comparable yield
- Basic breeding for stalk rot resistance
 underway

Southland Farms

St. Martin Parish

40 acres per day

(Over the top)

Open and plant 3 rows

Finished product

What do you see?

What don't you see?

Can pesticides improve billet yield?

- Fungicides did not improve yield in past
- Syngenta "seed" treatment chemicals part of new Plené[®] planting system for Brazil
- Insecticide and three fungicides
- Wanted to try chemistry with our billet planting system

Effects of Syngenta[®] Seed Treatment Chemicals on Billet Planting Yield

Effects of Syngenta[®] Seed Treatment Chemicals on Billet Planting Yield

Effect of Sygenta Chemicals on Billet Planting Yield (Harvester)

L 99-226	Non-treated	Combination	Whole stalk
Tons cane/acre	45.0 b	49.7 a	46.8 ab

2011 plant cane; harvester application

Application Method Experiment

LSU AgCenter Sugar Station, 2011

Treatments

• Dip

- Planter spray rig
- In-furrow, after planting spray (with high water volume)

 Promising results from multiple years with multiple varieties

- Promising results from multiple years with multiple varieties
- Dip application not feasible for industry

- Promising results from multiple years with multiple varieties
- Dip application not feasible for industry
- Results still preliminary
- NO LABELS

- Promising results from multiple years with multiple varieties
- Dip application not feasible for industry
- Results still preliminary
- NO LABELS
- Chemicals cost \$\$

Cooperators – Chemicals

- Nathan Blackwelder (ASCL)
- Calvin Viator and Associates
- LSUAC Sugar Research Station
- Syngenta

Can harvester modifications deliver a higher quality billet (less damage)?

Can harvester modifications deliver a higher quality billet (less damage)?

Will billets with less damage improve billet planting yield/reliability

Harvester Comparison Experiment

Big D Farms, Lafourche Parish, Sept. 2011

BUTTLIFTER ROLLER - 3 BAR OPEN

Production

CB11455267

NW10074

RUBBERS OF KICKERS OF BASECUTTER AND BACK PLATE

FEED ROLLER 4 BAR

Production

Seed Kit

CB11431272

NW10079

DRUM ASSY - TOP

CB11469337

CB11478553

SLATS

Planting field experiment

L 99-226 & L 03-371 planted

Billet light rate

Billet heavy (commercial) rate

Whole stalk: 3 stalk rate

Planting rate measured

Effects of harvester modifications on L 99-226 billet characteristics

Treatment	Billet length	# buds per billet	# damaged buds	# damaged internodes
Non-modified before planter	19.6 a	3.9 a	0.7 a	1.5 a
Non-modified after planter	19.3 a	2.7 c	0.4 b	1.1 a
Modified before planter	21.1 a	3.6 b	0.1 c	0.6 b
Modified after planter	18.9 a	2.8 c	0.3 bc	0.6 b

Effects of harvester modifications and planting rate on intial stand establishment in L 99-226

Treatment	Initial stand (shoots/acre x 1000)
Non-modified – heavy rate	58.3 a
Non-modified – light rate	42.4 bc
Modified – heavy rate	51.3 ab
Modified – light rate	38.0 c
Whole stalk	50.5 ab

 Harvester modifications did improve billet quality – more uniform with less damage

- Harvester modifications did improve billet quality more uniform with less damage
- Modifications did not affect initial stands

- Harvester modifications did improve billet quality more uniform with less damage
- Modifications did not affect initial stands
- Planting rate affected initial stands

- Harvester modifications did improve billet quality more uniform with less damage
- Modifications did not affect initial stands
- Planting rate affected initial stands
- Not much stress since planting

- Harvester modifications did improve billet quality more uniform with less damage
- Modifications did not affect initial stands
- Planting rate affected initial stands
- Not much stress since planting
- Stay tuned

Cooperators - Harvester

- Windell, Herman, & Nathan (ASCL)
- Ryan Viator (USDA-ARS)
- Kenneth Gravois & Mike Hebert (LSUAC)
- Big D Farms
- John Deere

Variety ratings for billet planting tolerance

Variety	Billet planting tolerance
Ho 95-988	Poor
HoCP 96-540	Intermediate
L 97-128	Poor
L 99-226	Poor?
L 99-233	Intermediate
HoCP 00-950	Poor
L 01-283	Intermediate
L 01-299	Intermediate
L 03-371	Poor

Intermediate = lower yield when stress occurs Poor = consistently lower yield

Billet planting = Tilting at windmills?

Goal: Less Risk

Goal: Less Risk Slightly Lower Cost?

Goal: Less Risk Slightly Lower Cost? Might Be Our Future

Public Enemy No. 1: Brown Rust

It's back.....

• Susceptible variety being grown: HoCP 96-540, L 99-226

- Susceptible variety being grown: HoCP 96-540, L 99-226
- Early, vigorous plant growth: plant cane, light textured soil, high fertility, lack of freezes or protected location

- Susceptible variety being grown: HoCP 96-540, L 99-226
- Early, vigorous plant growth: plant cane, light textured soil, high fertility, lack of freezes or protected location
- Rust infection beginning on young leaves of plants with most advanced growth

- Susceptible variety being grown: HoCP 96-540, L 99-226
- Early, vigorous plant growth: plant cane, light textured soil, high fertility, lack of freezes or protected location
- Rust infection beginning on young leaves of plants with most advanced growth
- Rust on older leaves is not indication of need to spray

Fungicide Application Recommendations

- Apply Headline[®] at 9 oz/acre in at least 15 gal of water per acre
- Apply on 36 inch band at first application
- Spray before extensive development of rust on young leaves
- Re-evaluate situation after 18-21 days (two applications allowed under current label)