New Developments in Rice

Louisiana Agricultural Technology and Management Conference

> Marksville, LA February 14, 2013

Sharpen[®] herbicide

Preplant Burndown for Rice

c Sharpen 1.0 to 2.0 fl oz/A

- **c** Broadcast preplant burndown
- Apply at least 15 days prior to rice planting and 45 days before a permanent flood is established
- **c** Apply with glyphosate and adjuvants

Sharpen®

Preplant Burndown for Rice

Recommendations

- è Burndown of broadleaf weeds including glyphosate resistant pigweed
- è Apply Sharpen 1 to 2 oz/A + glyphosate + aduvants
- è Residual control based on rate
- è Fast activity
- è Non ALS
- è Apply preplant up to 15 days prior to planting rice

🗖 = BASE

Preplant Burndown for Rice

Untreated

The Chemical Company

Sharpen 2 oz/A + glyphosate + adjuvants applied 15 days preplant for rice burndown

New for 2013:

Fastac EC

Insecticide

- 3/4 Synthetic pyrethroid: alpha-cypermethrin
- ³/₄ Crops include: Rice, cotton, corn, grain sorghum, soybeans, wheat and various vegetables
- 34 Use rates range from 1.3 to 3.8 oz/A depending upon targeted pest for control

Rice Insects Controlled

Fastac[®]**EC**

Insecticide

Insects Controlled	Application Rate		
Armyworm, fall Armyworm, true Armyworm, yellow striped Grasshopper Green bug Leafhopper spp. Rice water weevil (adult)	3.2 to 3.8 fl ozs/A		
Chinch bug Rice stink bug	2.6 to 3.8 fl ozs/A		

RASE

Expected for 2013:

Sercadis[®]

Xemium® Brand Fungicide

- 3/4 Section 18 re-registration expected in Louisiana for control of strobilurin resistant sheath blight
- ³⁄₄ Only in the parishes of Acadia, Evangeline, Jefferson Davis, St. Landry, and Vermillion
- 3/4 Rate Range: 4.5 to 6.8 fl ozs/A

Outlook[®] herbicide for Soybeans

Residual Control of Red Rice and other weeds in Soybeans

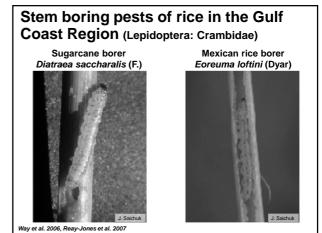
³4 Common Name: Dimethenamid
³4 Chemical Family: Chloroacetamide
³4 Residual control of grasses including Red Rice
³4 Applications: PPI, Preplant, Preemergence or Early Post (up to 5th trifoliate)

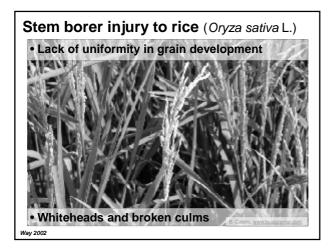
Thank You

Sharpen[®] Powered by Kixor[®] Herbicide Newpath[®] Herbicide for Clearfield[®] Rice

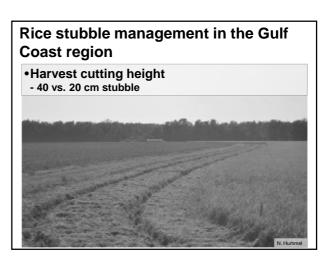
Sercadis

Xemium® Brand Fungicide


Clearpath[®] Herbicide for Clearfield[®] Rice


> Beyond Clearfield[®] Production System Herbicide

Chief Termels Surger and Te



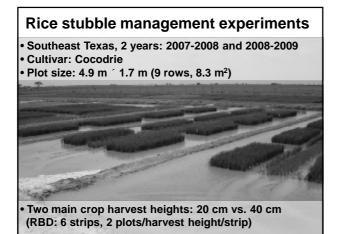
Stem borer management in rice

- Insecticides
- Chlorantraniliprole seed treatments
- Pyrethroid applications, no economic thresholds
- Cultivar resistance - Commercial cultivars are susceptible
- •Biological control - Parasitoids are not efficient
- Non-crop hosts
- Year-round source of E. loftini populations

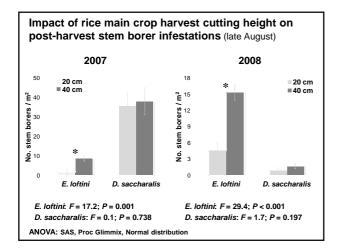
Way et al. 2006, Reay-Jones et al. 2007, Lv et al. 2011, Beuzelin et al. 2011

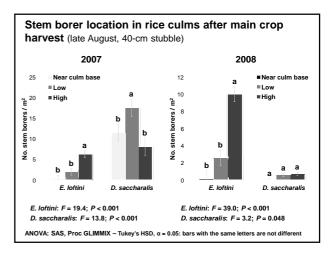
Rice stubble management in the Gulf Coast region

- •Harvest cutting height - 40 vs. 20 cm stubble
- Production of a ratoon crop
- Second crop developing from the main crop stubble

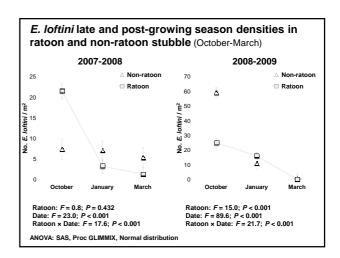


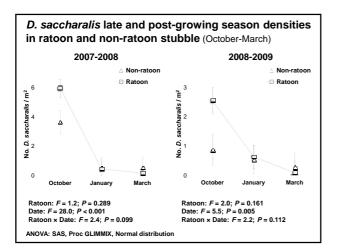
Rice Stubble Management Experiments


Objective:


Determine the impact of harvest cutting height and ratoon crop on stem borer infestations in rice stubble from summer to spring

euzelin et al. 2012. Crop Prot. 34: 47-55





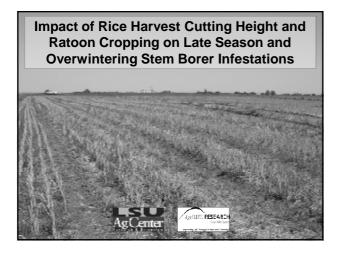
Discussion – Rice stubble management

- •Lowering rice harvest cutting height has the potential to decrease *E. loftini* infestations
- Compared to *D. saccharalis* larvae and pupae, relatively more *E. loftini* immatures are located near the top of rice culms
- Rice stubble, ratoon and non-ratoon, harbors late season and overwintering stem borer populations

Conclusions – *E. loftini* and *D. saccharalis* management in Gulf Coast rice

- Under conditions conducive to stem borer infestations, stubble management between fall and spring may be justified
- E. loftini and D. saccharalis are not interchangeable pests
- Location in rice culms
- Oviposition behavior
 - Species-specific IPM
- Tunneling behavior - Seasonal activity
- strategy needed?

Legaspi et al. 1997, Reay-Jones et al. 2007, Showler & Castro 2010, Beuzelin et al. 2011


Acknowledgements

Technical assistance

- David Blouin, Professor of Statistics (LSU AgCenter) - Blake Wilson, Waseem Akbar, Research associates
- (LSU AgCenter) - Jack Vawter, Farm research services manager (Texas A&M AgriLife)

Funding

- USDA CSREES Crops-At-Risk IPM program grant 2008-51100-04415

Insecticidal Control of Sap Feeders, Cheneyville, LA

- 1st Stubble, HoCP 96-540
- Insect numbers counted on 3rd or 4th leaf down from the whorl
- Treatments applied with CO₂pressurized backpack sprayer calibrated to deliver 10 gpa at 30 psi on July 24, 2012

Treatment		No. per leaf*					
	Rate / acre	Pre-treatment		4 DAT		12 DAT	
		WIC	SA	WIC	SA	WIC	SA
Untreated check		2.6	433.4	7.3 a	334.6 a	6.0 a	69.8abo
Transform WG (sulfoxaflor)	1.5 oz	6.3	382.2	3.5 b	8.9 b	4.1 a	0.3 c
Baythroid XL (β-cyfluthrin)	2.1 fl oz	3.6	372.2	2.0 b	302.5 a	0.3 b	108.9ab
Besiege (chlorantraniliprole + γ-cyhalothrin)	9.0 fl oz	4.0	457.0	0.7 b	271.4 a	0.1 b	126.6 a
Admire Pro (imidacloprid)	1.3 fl oz	6.2	463.9	0.3 b	71.4 b	0.0 b	0.53 c
Leverage 360 (β-cyfluthrin + imidacloprid)	3.0 fl oz	5.9	434.4	0.0 b	65.2 b	0.0 b	12.5bc

Insecticidal Control of Sap Feeders