






http://www.lsuagcenter.com/en/crops\_livestock/crops/soybeans/Publications/Soybean-Weed-Insectand-Disease-Field-Guide.htm

### Mid-South Soybean Stink Bug Pest Complex



Nezara viridula



UGA5175036

Acrosternum hilare





Euschistus servus



## That red stink bug...





**Redbanded Stink Bug** 

**Red Shouldered Stink Bug** 

- Common name: redbanded stink bug
- Scientific name:
  Piezodorus guildinii
  (Westwood)
- Most damaging stink bugPhysical damageChemical damage



R5 to R8

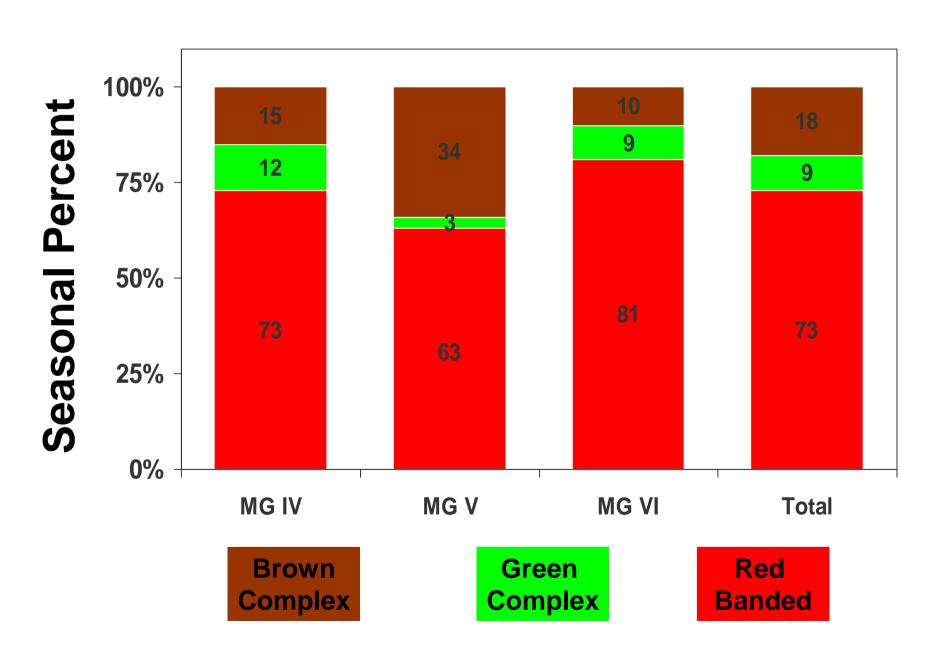
0 stink bugs/25 sweeps

3 stink bugs/25 sweeps

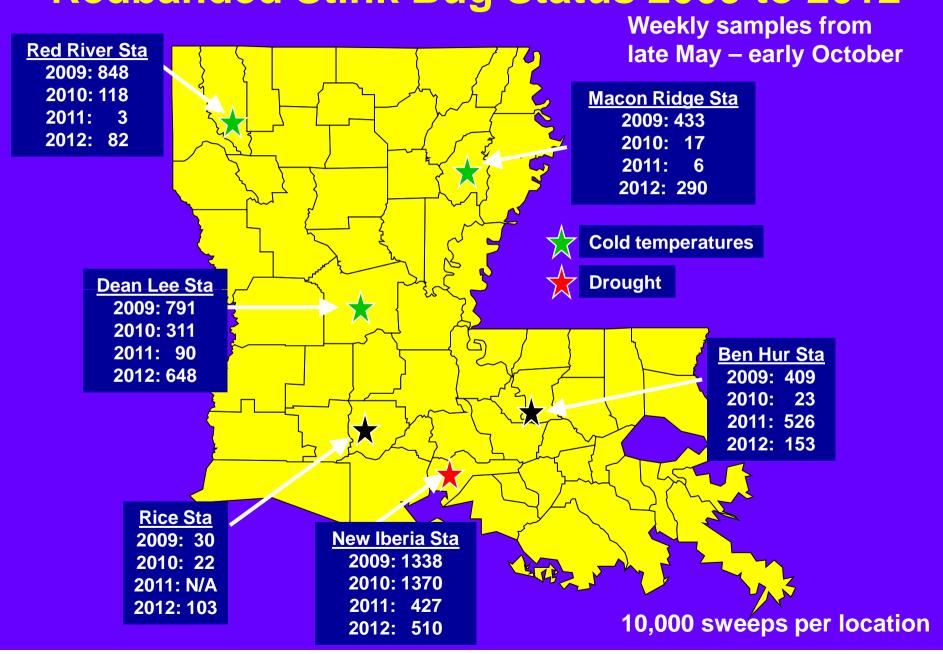






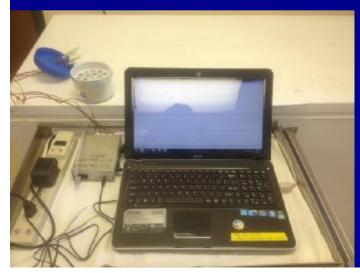

**BEN HUR 2011** 

Action Threshold = 6 per 25 sweeps for redbanded stink bug


- Common name: redbanded stink bug
- Scientific name:
  Piezodorus guildinii
  (Westwood)
- Most damaging stink bugPhysical damageChemical damage
- Most numerous stink bug in LA and TX soybean
   50% of stink bugs caught in soybean



## LA Stink Bug Abundance




### Redbanded Stink Bug Status 2009 to 2012



## Determine upper and lower developmental thresholds and supercooling points for redbanded stink bug

- ✓ Redbanded stink bug supercooling point is -4°F
- ✓ When exposed to 23°F for 24 hr, 75% mortality occurred
- ✓ At 32°F, redbanded stink bug had to be exposed for a week to see 95% mortality





# Brown marmorated stink bug (Halyomorpha halys Stahl)



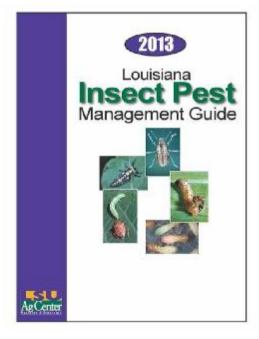




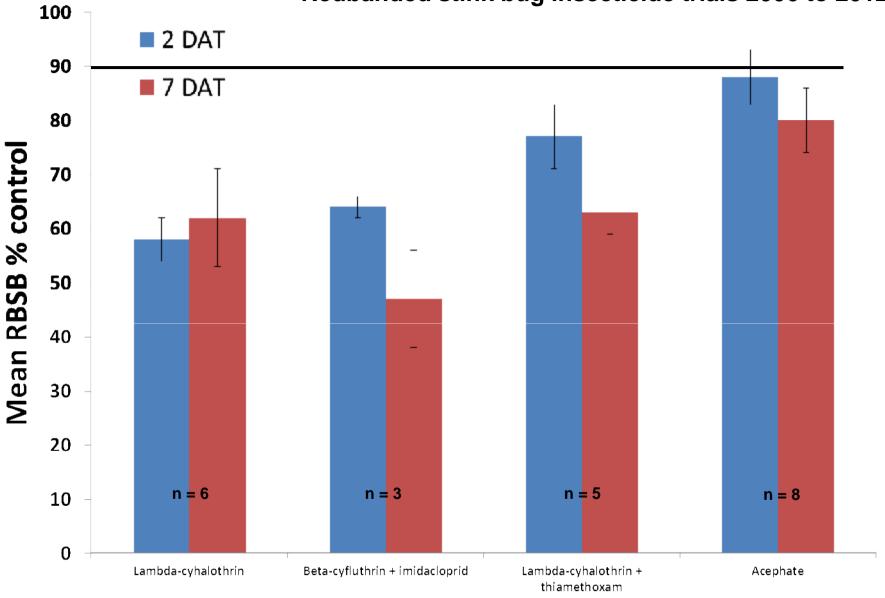


## LOUISIANA RECOMMENDATIONS FOR CONTROL OF INSECTS ON SOYBEANS

| Insect                 | Insecticide                 |
|------------------------|-----------------------------|
| Redbanded              | <control></control>         |
| stink bug <sup>4</sup> | Orthene (Acephate)          |
|                        | Endigo ZC                   |
|                        | Brigade (2)                 |
|                        | Hero (1.24)                 |
|                        | Leverage 360                |
|                        | <suppression></suppression> |
|                        | Cyfluthrin (2)              |



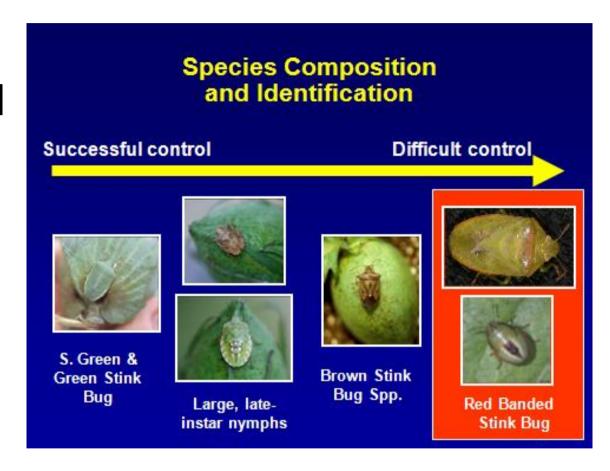

## When to Treat (Economic threshold)


Treat for 24 bugs in 100 sweeps.

Treat when you reach 16 bugs in 100

sweeps




#### Redbanded stink bug insecticide trials 2006 to 2012



Insecticide

## Controlling Stink Bugs: Insecticides

- Stink bugs can be difficult to control
  - Multiple insecticide applications
  - Concerns about resistance management





#### Welcome



Welcome to the Arthropod Pesticide Resistance Database (APRD). This website serves as a gateway to access the database. Anyone can <u>Search</u> the database, but only authorized user can submit a case to the database. If you want to submit a case, you must <u>Login</u> to the system first. If you do not have an account, please feel free to <u>Apply Online</u>.

#### **Brief Introduction**

We publish this data on the internet as a public service, for use by resistance management practitioners around the world. We encourage researchers to contact us with any resistance information they might have. Contact us if you have any difficulties with these pages, or with comments and suggestions.

This is a database of reports of resistance cases from 1914 to the present, when the resistance is first discovered for a specific time and place. Pesticide resistance is a dynamic, evolutionary phenomena and a record in this database may or may not be indicative of your area. Similarly, the absence of a record in this database does not indicate absence of resistance.

This database was made possible by grants from the US Department of Agriculture, <u>CSREES Pest Management Alternatives Program</u>, the Insecticide Resistance Action Committee (<u>IRAC</u>), and Generating Research and Extension to meet Economic and Environmental Needs (<u>GREEN</u>) Project # GR02-69, Michigan Agricultural Experiment Station (<u>MAES</u>), Michigan State University Extension (<u>MSUE</u>) and the Michigan Department of Agriculture (<u>MDA</u>).

#### http://www.pesticideresistance.org

#### nezara viridula

#### Profile

| Order     | Family       | Common Name(s)          | Group | Host   |  |
|-----------|--------------|-------------------------|-------|--------|--|
| hemiptera | pentatomidae | southern green stinkbug | AG    | cotton |  |

#### Shown Resistance to Active Ingredient(s)

1. DDT

#### Citation(s) of Resistance

| # | Citation                                                                                                                 |
|---|--------------------------------------------------------------------------------------------------------------------------|
| 1 | Hooper, G. H. S. (1968). A review of the problem of insecticide resistance in Australia J. Aust. Entomol. Soc., 7 67-76. |

#### Location(s) Where Resistance is Reported

| # | Location    |
|---|-------------|
| 1 | 7 Australia |

#### http://www.pesticideresistance.org

# Redbanded stink bug acephate resistance monitoring

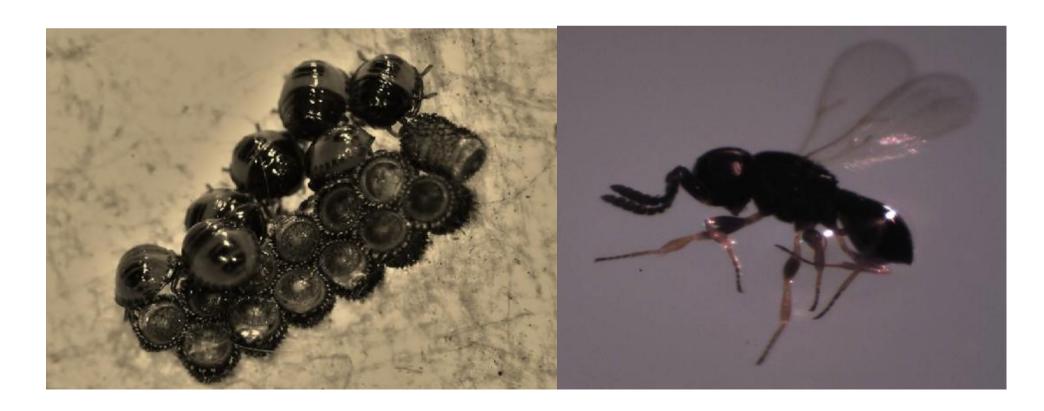
% Mortality at LC50 for methamidophos



| Collection | %   |
|------------|-----|
| LA1        | 32* |
| LA2        | 47  |
| LA3        | 79  |
| LA4        | 85  |
| LA5        | 44  |
| LA6        | 53  |
| LA7        | 55  |
| LA8        | 10* |
|            |     |

# Stink Bug Insecticide Resistance Management

- Spray only when necessary
  - Action Thresholds
- Use labeled rates
- Rotate chemistries/modes of action


Acephate = 1B

Pyrethroids = 3A

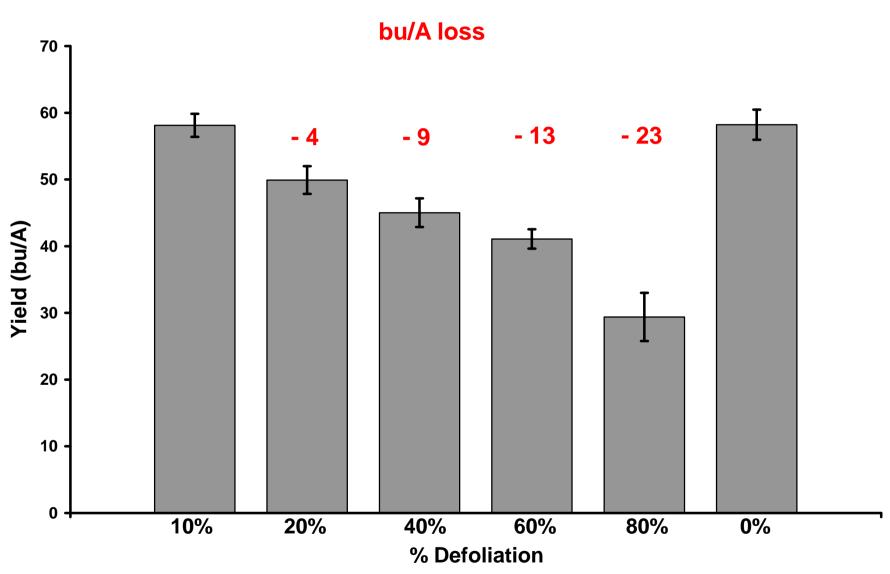
**Neonicotinoids = 4A** 

## Why conserve natural enemies? Stink Bug Egg Parasitoids

- 20 to 54% of individual eggs parasitized
- 26 to 68% of egg masses parasitized
- Can significantly impact populations



## Why conserve natural enemies? Fire Ants


- Prior to insecticide applications, fire ants were avg. 100 per plot
- After insecticide applications were applied, fire ants were reduced to zero
- This coincided with a flaring of velvetbean caterpillar and soybean looper







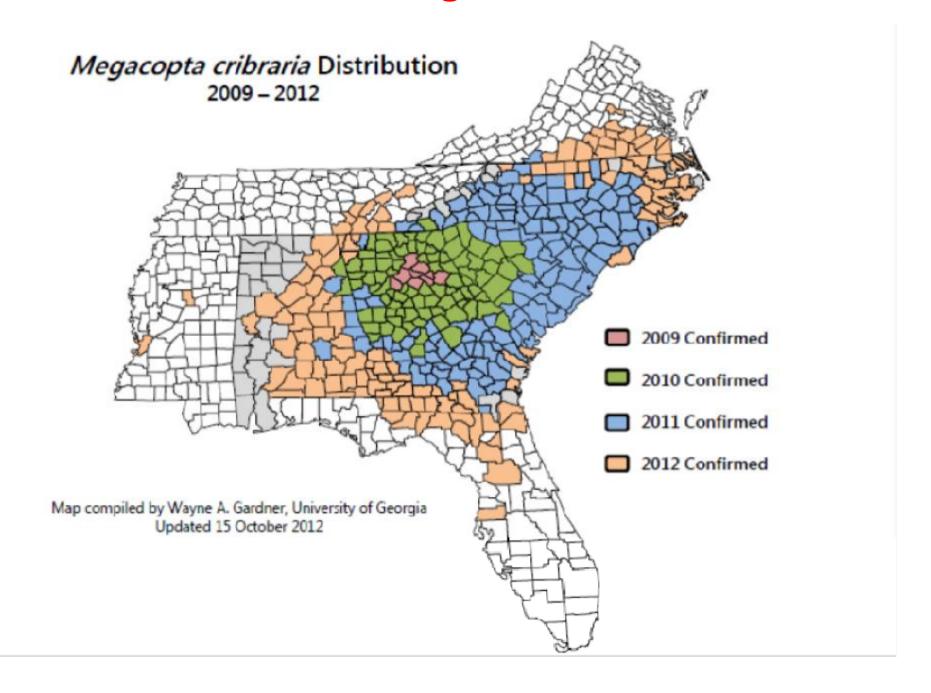
#### Yield loss due to VBC and SBL



How much defoliation occurs after application and before worm death?

|    | NA |  |
|----|----|--|
|    |    |  |
|    |    |  |
| NO | 18 |  |

| Treatment/  | Rate |               |
|-------------|------|---------------|
| Formulation | oz/A | % Defoliation |
| Belt        | 2.0  | 7             |
| Belt        | 3.0  | 3             |
| Coragen     | 5.0  | 6             |
| Coragen     | 7.5  | 2             |
| Intrepid    | 4.0  | 22            |
| Intrepid    | 8.0  | 19            |
| Steward     | 4.6  | 7             |
| Steward     | 11.3 | 7             |
| Tracer      | 1.0  | 28            |
| Tracer      | 2.0  | 15            |
| Larvin      | 18.0 | 57            |
| Larvin      | 30.0 | 22            |


#### Monitoring for Soybean Looper Insecticide Resistance

% Mortality at LC95 for each product **UTC** Belt Steward Intrepid SBL Colony DL2012 98 6\* 78\* NI2012 100 69\* 98 SJ2012 87\* 100 47\*

**Key Point:** Soybean looper populations that arrive in Louisiana can be resistant to Steward and Intrepid



### **Current Kudzu Bug Distribution**





#### **University of Georgia**

P. Roberts, J. All, D. Buntin, W. Gardner, John Ruberson, M. Toews, D. Suiter, and T. Jenkins

#### **Clemson University**

J. Greene, N. Seiter, and F. Reay-Jones

**USDA---NBCL** 

W. Jones

## Yield Loss in Soybeans

Georgia and South Carolina, n=19

| Year | State | % Yield<br>Reduction | Maturity<br>Group | Test Type  |
|------|-------|----------------------|-------------------|------------|
| 2010 | GA    | 11%                  | MGVII             | Trt vs Unt |
| 2010 | GA    | 19%                  | MGVII             | Trt vs Unt |
| 2010 | GA    | 23%                  | MGVII             | Efficacy   |
| 2010 | GA    | 23%                  | MGVII             | Efficacy   |
| 2010 | GA    | 14%                  | MGVII             | Efficacy   |
| 2010 | GA    | 22%                  | MGVII             | Efficacy   |

| <b>18</b> % | AVG    |
|-------------|--------|
| Range:      | 0%-47% |

| Year | State | % Yield<br>Reduction | Maturity<br>Group | Test Type |
|------|-------|----------------------|-------------------|-----------|
| 2011 | sc    | 0%                   | MGIV              | Threshold |
| 2011 | sc    | 10%                  | MGVII             | Threshold |
| 2011 | GA    | 27%                  | MGV               | Threshold |
| 2011 | sc    | 14%                  | MGVIII            | Pheno     |
| 2011 | sc    | 12%                  | MGVII             | Pheno     |
| 2011 | GA    | 47%                  | MGV               | Pheno     |
| 2011 | GA    | 36%                  | MGV               | Efficacy  |
| 2011 | sc    | 20%                  | MGVII             | Efficacy  |
| 2011 | sc    | 25%                  | MGVII             | Efficacy  |
| 2011 | GA    | 30%                  | MGVII             | Efficacy  |
| 2011 | GA    | 0%                   | MGVII             | Efficacy  |
| 2011 | GA    | 13%                  | MGVII             | Efficacy  |
| 2011 | GA    | 0%                   | MGVII             | Efficacy  |

### **Kudzu Bug Insecticides**

| Insecticide    | (n) | Mean % Control<br>(2-5 DAT) |
|----------------|-----|-----------------------------|
| Hero           | 1   | 96                          |
| Brigade        | 4   | 95                          |
| Karate+Orthene | 1   | 94                          |
| Endigo         | 9   | 92                          |
| Brigadier      | 2   | 91                          |
| Discipline     | 3   | 90                          |
| Sevin          | 3   | 90                          |
| Karate         | 8   | 89                          |
| Declare        | 3   | 85                          |
| dimethoate     | 1   | 84                          |
| Cobalt         | 6   | 82                          |
| Mustang Max    | 4   | 81                          |
| Orthene        | 5   | 81                          |

- Threshold (preliminary):
  - Treatment should be initiated when nymphs exceed one per sweep.

## Thank You

**Questions?** 

Email: jeffdavis@agcenter.lsu.edu

Phone:

225-578-5618

#### **ACKNOWLEDGEMENTS:**

This work was funded in part by the Louisiana Soybean and Grain Research and Promotion Board.



