Recent Corn Nitrogen Research Conducted by the LSU AgCenter

John Kruse, Ph.D* Josh Lofton, Ph.D H. "Rick" Mascagni, Ph.D. Brenda Tubana, Ph.D.

*Currently with Koch AS

Overview of the challenge

- Corn yields depend on optimal nitrogen rates
- Too little N costs yield
- Too much N costs money, leads to luxury consumption, and can have potential environmental impacts
- Different parts of a field require different rates of nitrogen
- Irrigated vs. non-irrigated
- Each year is different



Environmental & Regulatory Factors

2012 EPA Lawsuit: Gulf Restoration Network et al v. Jackson et al.

The Clean Water Act allows states to use either "<u>narrative</u>" or "<u>numeric</u>" standards as a method for determining water quality. Most states in the Mississippi River Basin use narrative standards such as "no nutrients at levels that cause a harmful imbalance of aquatic populations." (Farm Bureau Press Release 5-10-12)

Research Trials

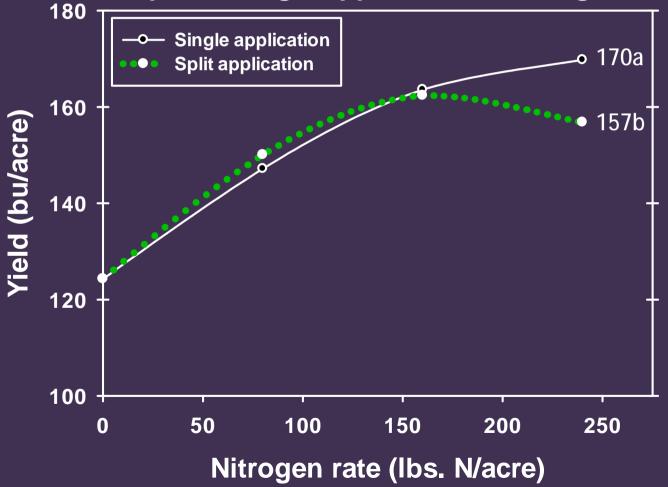
- Split applications
- Additional applications
- Sensor-based applications
- Soil test-based applications

Split application – Macon Ridge


Single application

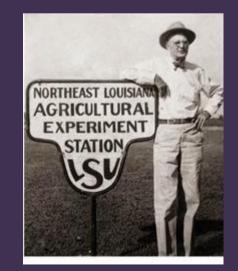
Split application

Split application – Macon Ridge


Irrigated corn yield under split vs. single application of nitrogen

Split application – Dean Lee

Non-irrigated corn yields under split vs single application of nitrogen



Additional applications

- NERS St. Joseph
- Sharkey clay irrigated

- Early season N, with and without N at tassel
- Two hybrids
- Five plant populations
- Planted April 9

Seeding rate effect (flex ear hybrids)

Seeding rate (seed/a)	Yield (bu/a)	Plants (pl/a)	Seed wt (g/100)	Kernels (no./ear)
26,400 (24,000)	213.0	28,400	37.6*	507*
26,400 (24,000-cone)	199.2	27,870	36.8	498
30,800 (28,000)	211.6	30,820	36.1	481
35,200 (32,000)	219.3*	34,970	35.3	449
39,600 (36,000)	213.6	37,600	34.7	417
44,000 (40,000)	216.6*	43,020*	33.7	375
LSD _(0.10)	5.6	700	0.7	14

Additional applications

Additional applications

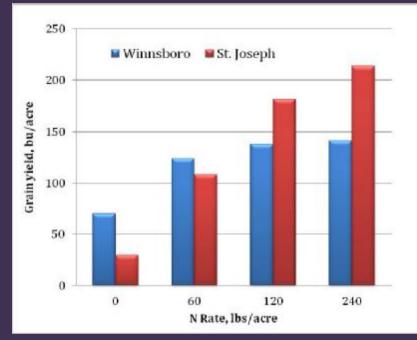
Early-season N	Early silk N	Total N	AVG	Difference
(lb/acre)			(bu/acre)	
180	0	180	177.6	
	60	240	217.0	39.4
210	0	210	193.7	
	60	270	224.1	30.4
240	0	240	209.2	
	60	300	229.8	20.6
270	0	270	215.3	
	60	330	229.5	14.2
LSD _(0.10) early N x late N				6.5
LSD _(0.10) H x early N x late N				NS

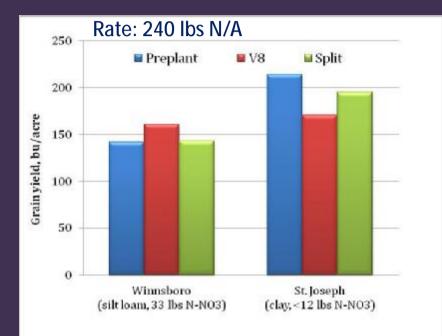
1st-year indications

- Heavier irrigated soils full rate + late N
- Silt loam irrigated soils full rate + late N
- Dryland corn full rate then check soil moisture at tassel
- Still need optimum pollination period (2012)

Nitrogen Response Trial

St. Joseph, clay, <12 lbs NO₃-N/A


Winnsboro, silt Ioam, 33 lbs NO₃-N/A


Samples pulled: 0-6 and 6-12 inches

Nitrogen Response Trial

Corn in St. Joseph was more responsive to N than in Winnsboro.

Delayed N application resulted in large reduction in yield in St. Joseph but not in Winnsboro.

Soil nitrate test (at V8) was higher in Winnsboro

Evaluation of Midseason N Rate Estimation Procedures

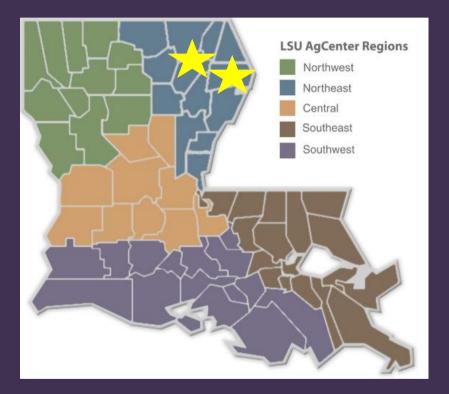
Soil	Midseason N Rate Estimation Procedure	Total N Applied Ib ac ⁻¹	Yield bu ac ⁻¹	N Fertilizer Use Efficiency (%)	*Net Return to N Fertilizer, \$ ac ⁻¹
Sharkey clay (St. Joseph)	Yield goal, PSNT	240	207	52	1138
	Sufficiency concept	127	168	76	927
	Sensor-based	175	185	62	1020
Gigger silt loam (Winnsboro)	Yield goal, PSNT	241	150	23	413
	Sufficiency concept	128	142	39	432
	Sensor-based	142	145	37	447

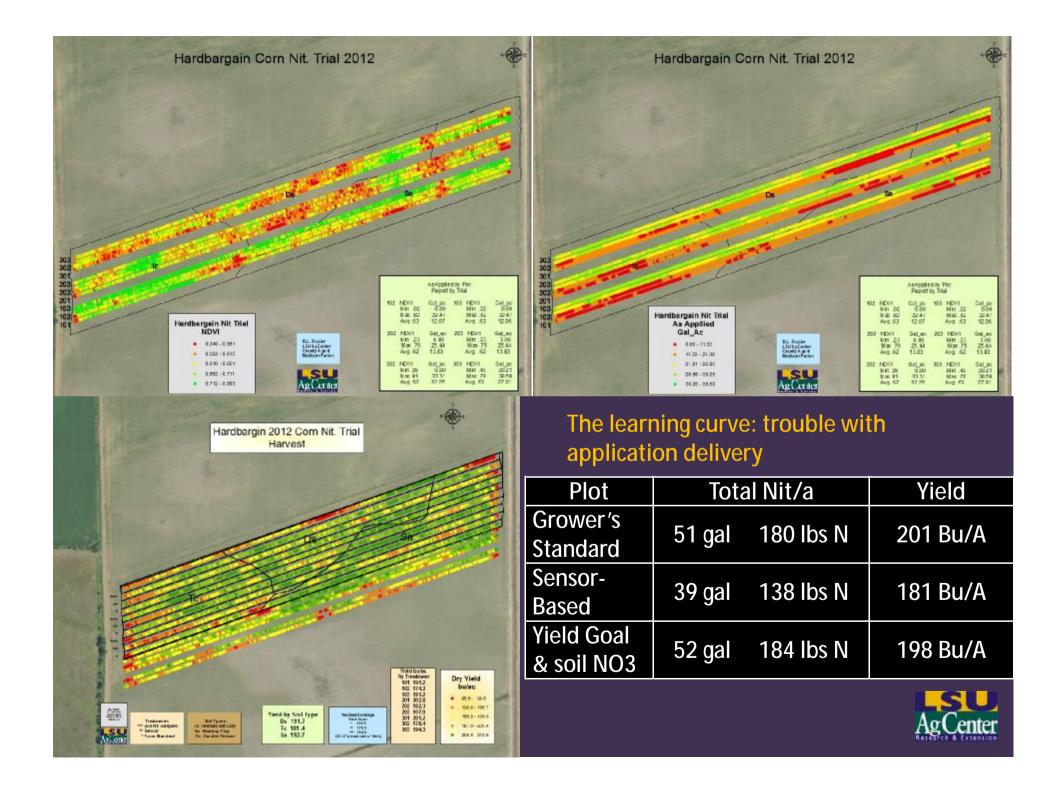
Recommendation: 240 lbs N/ac

Corn grain price per bushel - \$7.42; N fertilizer cost (as UAN32) - \$0.76/lb

* Computed as = ([Yield_{fertilized plot} – Yield_{check}] X grain price) – (Total N applied X N fertilizer cost)

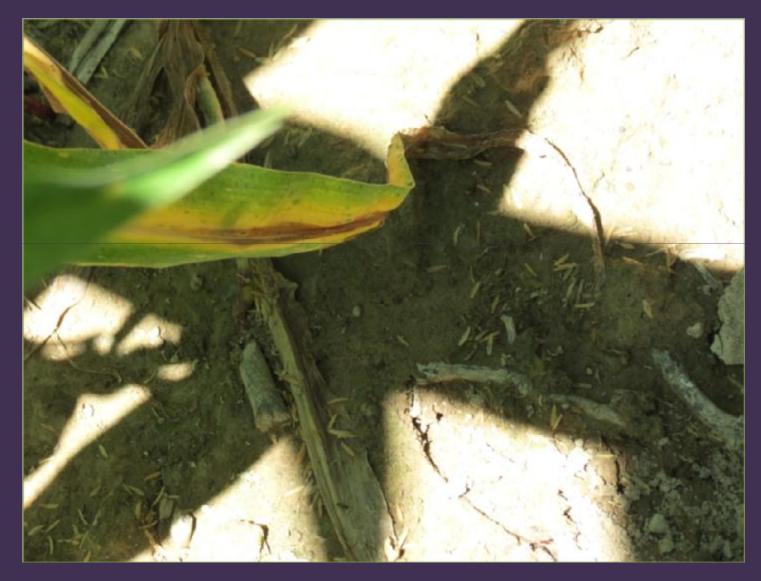
On-Farm Demonstration





On-Farm Demonstration

- Collins Madison Parish
- Harbargain West Carroll Parish



Highlights

- Delayed, one-time N application may result in yield reduction if available soil N is low at planting (our study showed <12 lbs NO₃-N).
- For split-applied N, corn grown on heavy textured soil would require higher preplant N rate than corn on lighter textured soil.
 - Knowledge on soil NO3 level is valuable to make decision.

Questions

