Valent USA Product Update

Bill Odle and John Bordlee

Products That Work, From People Who Care®

Rice – League, Belay, Nipslt INSIDE Soybeans - Fierce

- § A selective herbicide which provides <u>residual</u> and <u>contact</u> control of many tough weeds
- § Imazosulfuron herbicide class is sulfonylurea (ALS)
- Sonventional or Clearfield rice, dry-seeded or water-seeded
- § Targeting:

Broadleaf Weeds	Texasweed, JointvetchesHemp SesbaniaPitted Morningglory
Aquatic Weeds	Eclipta, Ducksalad,Dayflower
Sedges	• Yellow Nutsedge, flatsedge,

- § Active ingredient = clothianidin (neonicotinoid)
- § 4.5 fl oz/A
- § Dry-seeded or water-seeded
- § Rice water weevil control
- § 1 application per year
- § Pre or post-flood
- § Up to 3rd tiller
- § Longer application window than pyrethroids, more grower flexibility

- § Active Ingredient = clothianidin
 - Seed treatment for insect control
 - Class of chemistry: neonicotinoid
 - Insect Control: systemic and contact
 - Registrations: sorghum, canola, sugarbeet, soybean, cereals
 - EPA registration on rice: August 30, 2012
 - Rice insects controlled: rice water weevil, grape colaspis, chinch bug, aphids, thrips

Background

- § Premix of flumioxazin and pyroxasulfone
- § New herbicide discovered and patented by Kumiai Chemical Industry Co. Ltd. and Ihara Chemical Industry Co. Ltd.
- § Registration schedule:

Field corn: March 2012

Soybean: February 2013 (any day now?)

- Cotton: Fall 2013

- Wheat: 2014

Peanuts: 2014

Two Modes of Action Working Together

Single barrel

Double barrel

- § Fierce = Flumioxazin + Pyroxasulfone (1.27:1)
- § Pyroxasulfone
 - Mode of Action: VLCFA (very long chain fatty acid inhibition)
 - Class of chemistry: Isoxazoline
- § Flumioxazin
 - Mode of Action: Cell membrane disruptions
 - Class of Chemistry: PPO

Pyroxasulfone – Mode of Action

Mode of Action	Site of Action	Chemical Family	Active Ingredient	Product Example
Shoot and Root Inhibitors VLCFA Inhibitors 15	Inhibitors	Thiocarbamate	EPTC butylate	Eradicane Sutan
	Chloroacetamide	acetochlor	Harness, Surpass	
			metolachlor	Dual II Mag, others
	Inhibitors		dimethenamid	Outlook
		Pyrazole	pyroxasulfone	Part of <i>Fierce</i>
	Oxyacetamide	flufenacet	Define	

Fierce Rate Structure

		Rate (oz product/A)		
		Course	Medium/Fine	Fine
Fierce	% AI	3	3.75	4.5
Flumioxazin	33.5	2.00	2.50	3.00
Pyroxasulfone	42.5	1.50	1.87	2.25
	76.0	Equivalent rates of Valor 51 WDG and KIH- 485 85 WDG		

Fierce Rotational Restrictions

Crop	Rotational Restriction for crops other than corn or soybeans (in months)
Wheat	18
Cotton	18
Peanuts	18
Rice	18
Alfalfa	18
Sugarbeet	18
All other Crops	18

Working on registration for cotton and wheat for 2013 season.

^{*}Working on lowering the rotational restriction on the above crops. Should be 9 month maximum for all crops.

Anticipated Fierce Rotational Restrictions

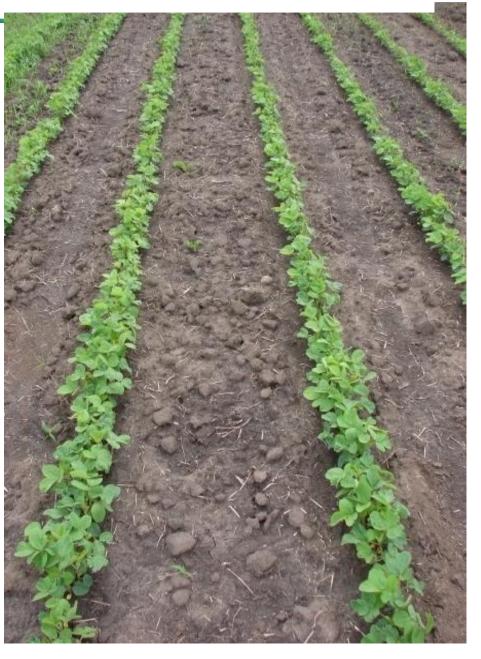
Crop	Rotational Restriction for crops other
	•
	than corn or soybeans (in months)
Wheat	1
VVIIOAL	<u>'</u>
Cotton	4
Peanuts	Δ
1 Cariats	7
Rice	12
Alfalfa	10
Allalla	10
Sugarbeet	15
All other Crops	18

^{*}Soybean registration and crop rotation changes pending at EPA

Weeds Controlled by Fierce

Carpetweed	Henbit	Puncturevine	Venice Mallow
Chickweeds	Jimsonweed	Purple Deadnettle	Waterhemp
Coffee Senna	Kochia	Purslane, Common	Barnyardgrass
Common Ragweed	Lambsquarters	Radish, Wild	Bluegrass, Annual
Dandelion	Little Mallow	Redmaids	Cheat
Eclipta	Marestail	Russian Thistle	Crabgrass
Eveningprimrose	Nightshade	Shepherds-purse	Downy Brome
Florida Beggarweed	Morningglory	Smallflower Morningglory	Foxtails
Florida Pusley	Mustard, Wild	Spotted Spurge	Goosegrass
Golden Crownbeard	Palmer Amaranth	Spurred Anoda	Panicums
Hairy Indigo	Pigweeds	Tropic Croton	Red Rice
Hemp Sesbania	Prickly Sida	Velvetleaf	Ryegrass, Italiian

§ Palmer amaranth control



UTC

Fierce 3.75 oz

Fierce Technical Summary

- § Low use rate
- § Unique chemistry
- § Dual action
- § Resistance Management
- § Palmer amaranth control
- § Broad Spectrum (broadleaf, annual grass)
- § Consistent

Rice Product Update

Bill Odle and John Bordlee

Products That Work, From People Who Care®

NEW League Herbicide

- § A selective herbicide which provides <u>residual</u> and <u>contact</u> control of many tough weeds
- § Imazosulfuron herbicide class is sulfonylurea (ALS)
- Sonventional or Clearfield rice, dry-seeded or water-seeded
- § Targeting:

Broadleaf Weeds	Texasweed, Jointvetch Hemp Sesbania Pitted Morningglory
Aquatic Weeds	Eclipta, Ducksalad, Dayflower
Sedges	Yellow Nutsedge, Flatsedge

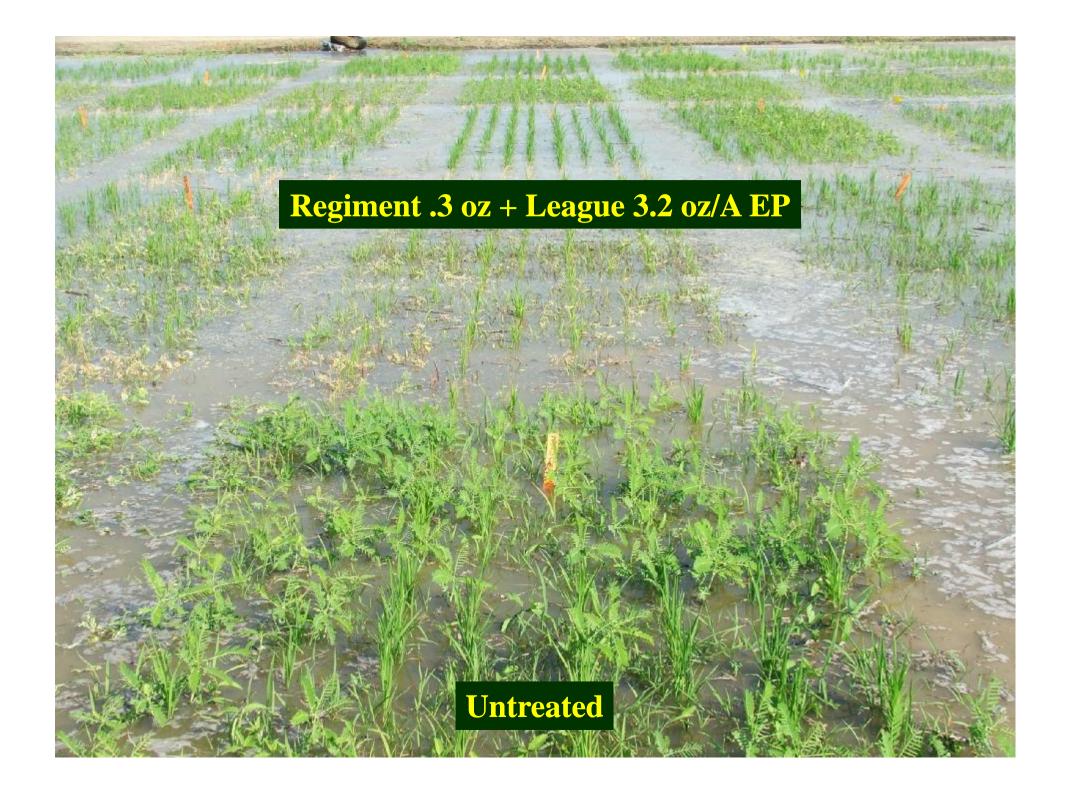
- § Preemergence 4.0 6.4 oz/A
- § Postemergence 3.2 4.0 oz/A + approved surfactant
- § Sequential Program 3.2 oz pre followed by 3.2 oz post
- § Dry-Seeded & Water-Seeded
- § Conventional & Clearfield
- § Ground & Air
- § Herbicide Compatible Bolero, Regiment, Command, Newpath, propanil, Facet, Prowl

Key Rice Weeds Controlled by League

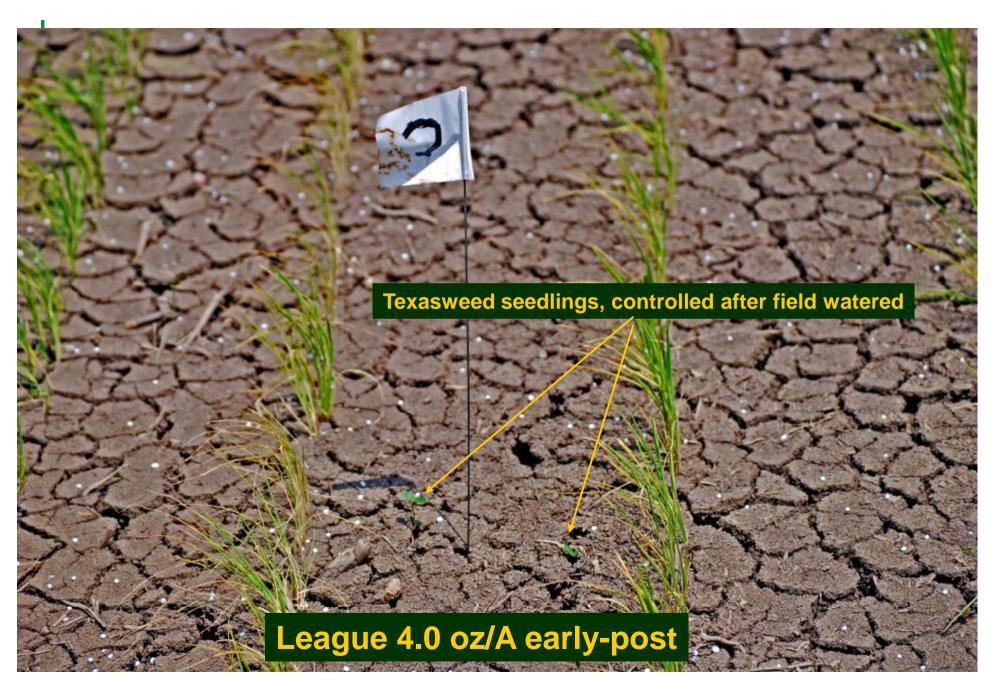
- § Dayflower
- § Ducksalad
- § Eclipta
- § Hemp Sesbania
- § Jointvetch (Indian, Northern)
- § Pigweed ¹
- § Pitted Morningglory
- § Redstem (postemergence)
- § Rice Flatsedge
- § Ricefield Bulrush (preemergence)
- § Texasweed
- § Yellow Nutsedge

¹ Does not control ALS resistant species

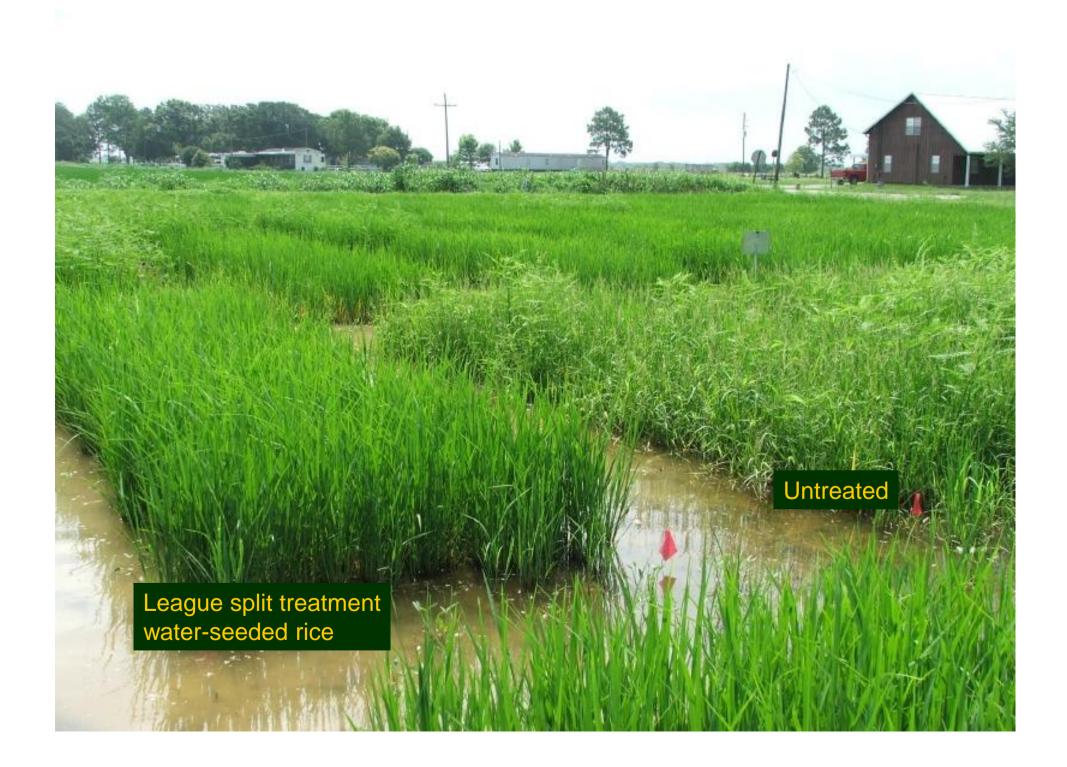

Untreated Check

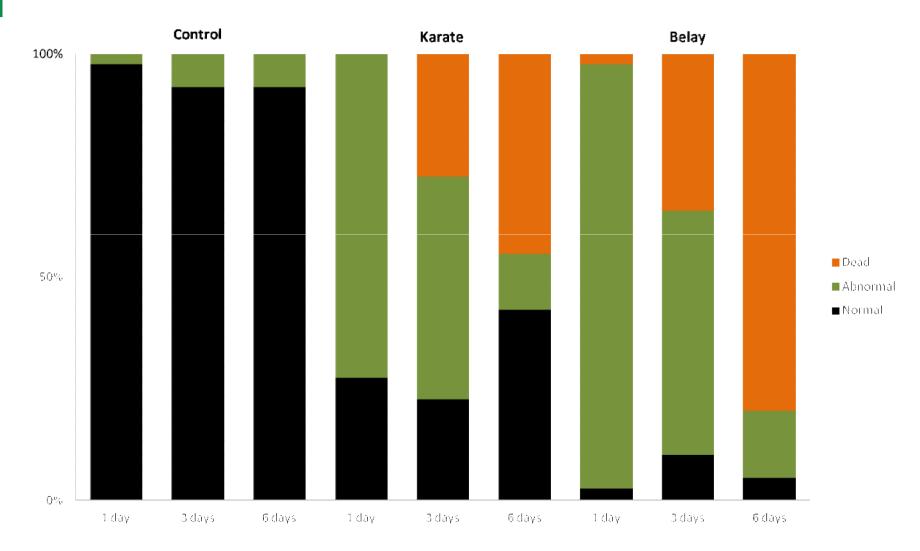


League 5.0 oz/A + Command









- § Clothianidin neonic
- § 4.5 fl oz/A
- § Rice water weevil control
- § Systemic and contact activity
- § Pre or post flood
- § Dry-seeded or <u>water-seeded</u>
- § Up to 3rd tiller
- § Excellent pyrethroid alternative
 - Longer application window (7 days pre-flood 10 days post)
 - Resistance management different AI/MOA

Why Belay?

Srinivas K. Lanka and Michael Stout, LSU AgCenter

RWW control in dry-seeded rice

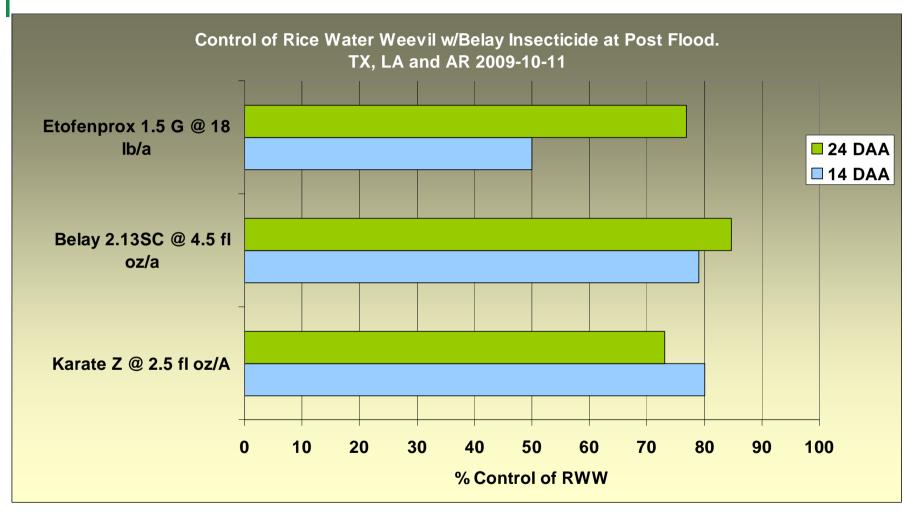
Dr. Mo Way, Beaumont, TX, 2011

	Rate	Timing	RWW	7/5 cores	Yield
Treatment	(fl oz/A)	a	Jun 21	Jul 1	(lb/A)
Untreated			94 a	34 a	6091 c
Karate $Z + NIS^b$	0.03 lb ai/A + 0.15% v/v	BF	21 b	28 a	6887 b
Belay 2.13SC + NIS	3.5 + 0.15 % v/v	BF	5 cd	7 cd	7247 ab
Belay 2.13SC + NIS	4.5 + 0.15 % v/v	BF	2 d	4 d	7372 ab

^a BF = before flood

^b NIS = non-ionic surfactant (Induce)

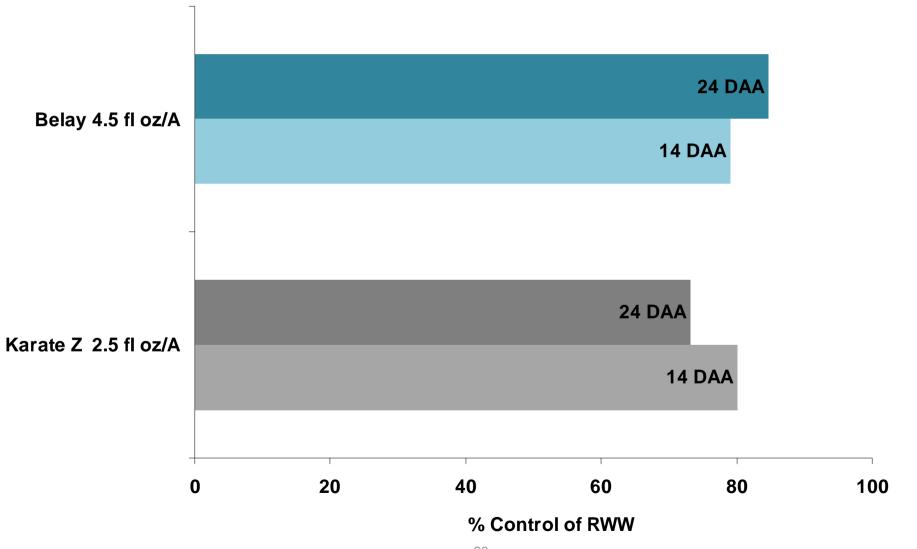
Belay control of RWW, dry-seeded



Dr. Mike Stout, Crowley, LA 2011

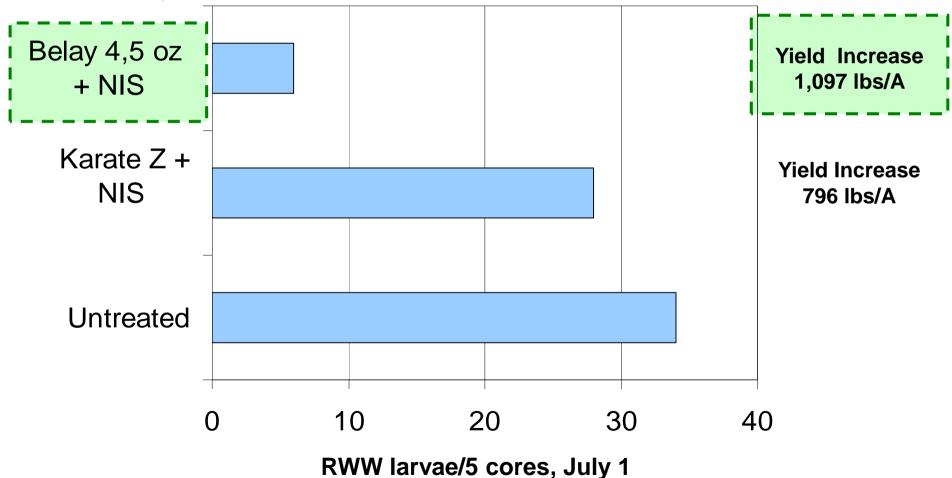
Densities of rice water weevil larvae			
Treatment	Larvae per core sample		
	14 DAF 20 DAF 28 DAF		
UTC	0.3	8.4	27.3
Belay 4.5 oz/A Pre-flood	0.5	6.1	10.4
Karate 0.03 lb ai/A Pre-flood	0.6	3.7	25.7
Cruiser ST 7.0 oz/cwt	0.0	3.3	17.1

Belay as a post-flood application for RWW

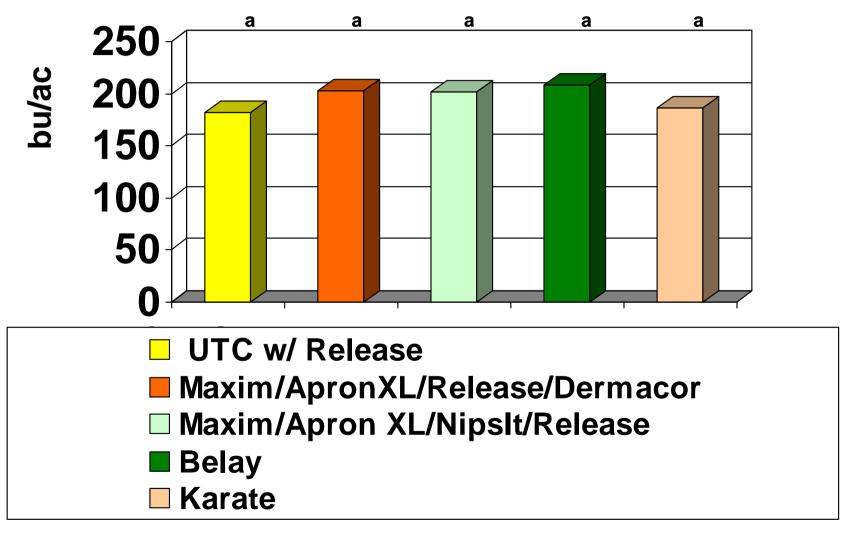


RWW Post-flood

Dr. Mo Way, Beaumont, TX 2009



Belay for the control of RWW


Foliar program, delayed post-flood timing 10 days

Dr. Mo Way, Beaumont, TX,2011

Belay Insecticide yields compared to STs (2010)

Summary across 8 locations (MS-3, AR, MO, TX-2, LA)

Belay control of RWW, water-seeded

Dr. Mike Stout, Crowley, LA 2009

Densities of rice water weevil larvae			
Treatment	Larvae per core sample		
	May 21	May 28	June 4
UTC	2.6	13.0	10.1
Belay 5 oz/A Post-flood	1.2	1.8	4.1
Dinotefuran G 150 gm ai/A Post-flood	2.8	2.6	5.4
Dinotefuran G 150 gm ai/A Split	0.3	2.4	5.1

Belay control of RWW, water-seeded

Dr. Mike Stout, Crowley, LA 2011

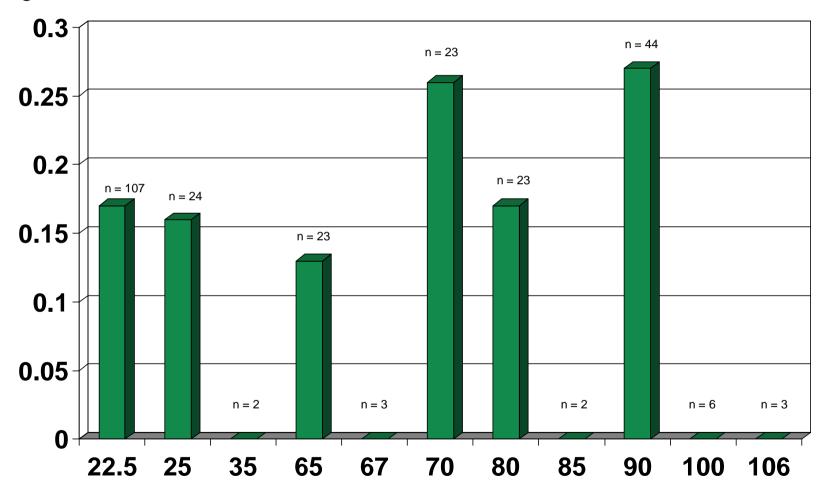
Densities of rice water weevil larvae			
Treatment	Larvae per core sample		
	I coring (21 II coring (28 III coring (35 DPF***) DPF) DPF)		
UTC	3.8 ± 1.0 a	10.8 ± 2.9 a	8.9 ± 2.0
Karate 5 DAF	2.3 ± 0.7 a	$3.5 \pm 0.7 \text{ b}$	5.6 ± 1.0
Belay 4.5 fl oz/A 5 DAF	1.4 ± 0.7 a	2.5 ± 1.4 b	5.3 ± 1.4
Belay 4.5 fl oz/A 12 DAF	0.8 ± 0.3 b	1.8 ± 0.9 b	2.8 ± 0.7

- § Clothianidin (lowest neonic water solubility)
- § Registered for use in soybeans, sorghum, canola, sugar beets, cereals
- § Rice registration approved August, 2012
- § Dry-seeded only
- § 1 application rate regardless of seeding rate
 - Low use rate with excellent efficacy = good ROI
- § Proven control of rice water weevil, grape colaspis and chinch bug
 - 2011 and 2012 EUP in Arkansas, Louisiana,
 Mississippi and Texas
 - Near 60,000 acres treated over 2 years

Rice EUP 2011 & 2012

- § Varieties
 - 24 total varieties
 - 9 conventional bred varieties
 - 6 Clearfield varieties
 - 9 total hybrids
 - ú 7 Clearfield hybrids
- § Seeding Rates
 - Ranged from 22 106 lbs/Ac

Rice EUP Results


2011 & 2012 Overall average

0.26 larvae / core

2012 Results by seeding Rate

Avg. larvae/core

Seeding rate (lbs seed/A)

NipsIt INSIDE Improves Yield

Treatment	Lake Hogue Poinsett Co.	Price Bros. Prairie Co.	Hunter Woodruff Co.	3 Location Mean (Bu/A)
Untreated	141.3 bcd	224.9 ab	159.4 bc	175 c
Dermacor 2.2 fl oz/cwt	128.6 d	228.0 ab	176.0 c	176 c
Cruiser 3.3 fl oz/cwt	152.0 a-d	227.1 ab	167.8 ab	182 abc
Nipslt INSIDE 1.92 fl oz/cwt	176.3 a	218.8 b	167.5 ab	188 ab

Dr. Gus Lorenz, et al., University of Arkansas – 2009 (3 locations)

Nipslt INSIDE RWW Control & Yield

Treatment	RWW/5 cores June 15	RWW/5 cores June 26	Yield (lb/A)
Untreated	77.5 a	41.3 a	6,321
Dermacor 2.5 fl oz/cwt	2.5 c	0.3 c	6,903
Cruiser 3.6 fl oz/cwt	11.0 b	13.8 b	6,614
Nipslt INSIDE 1.92 fl oz/cwt	1.5 c	6.0 bc	<u>7,140</u> N.S.

Dr. Mo Way, Texas A&M University, 2012

NipsIt INSIDE RWW Control

Treatment	RWW/core 22 Days PF	RWW/core 29 Days PF
Untreated	10.4 a	7.3 a
Dermacor 2.5 fl oz/cwt	0.6 c	2.0 b
Cruiser 3.6 fl oz/cwt	7.0 ab	2.5 b
Nipslt INSIDE 1.92 fl oz/cwt	4.8 b	2.8 b

Dr. Mike Stout, LSU, 2012

NipsIt INSIDE - Chinch Bug Protection

Treatment	Rate ^a (gai/100 KG seed)	% Mortality ^b
Untreated	-	10 b
NipsIt INSIDE	25	87 a
NipsIt INSIDE	100	95 a
NipsIt INSIDE	150	90 a

^a Commercial rate of NipsIt INSIDE is 75 gai/100 KG seed (= 1.92 fl oz/cwt seed).

Means in a column followed by the same letter are not significantly different (P = 0.05, ANOVA and LSD.

Dr. Mo Way et al, TAMU, Beaumont, TX. 2008 Greenhouse Study

^b % mortality based on 5 chinch bugs / cage after 48 hours exposure and all missing insects considered dead.

Rice Product Update

Bill Odle and John Bordlee

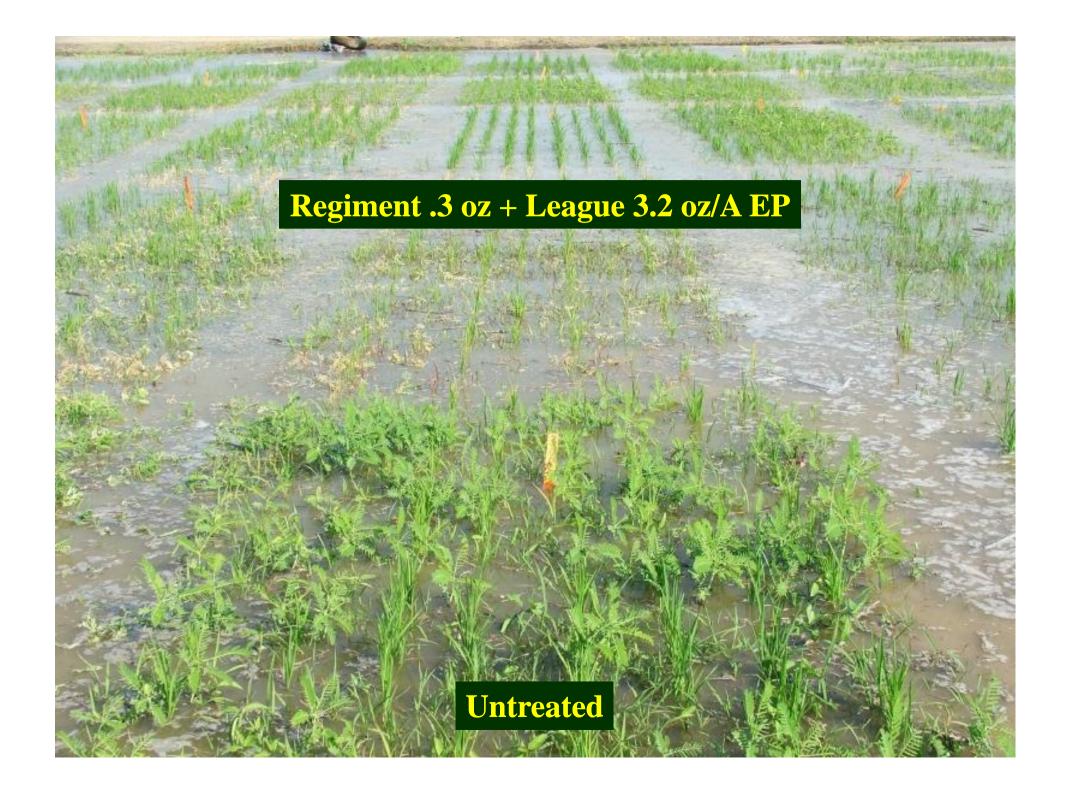
Products That Work, From People Who Care®

- § Preemergence 4.0 6.4 oz/A
- § Postemergence 3.2 4.0 oz/A + approved surfactant
- § Sequential Program 3.2 oz pre followed by 3.2 oz post
- § Dry-Seeded & Water-Seeded
- § Conventional & Clearfield
- § Ground & Air
- § Herbicide Compatible Bolero, Regiment, Command, Newpath, propanil, Facet, Prowl

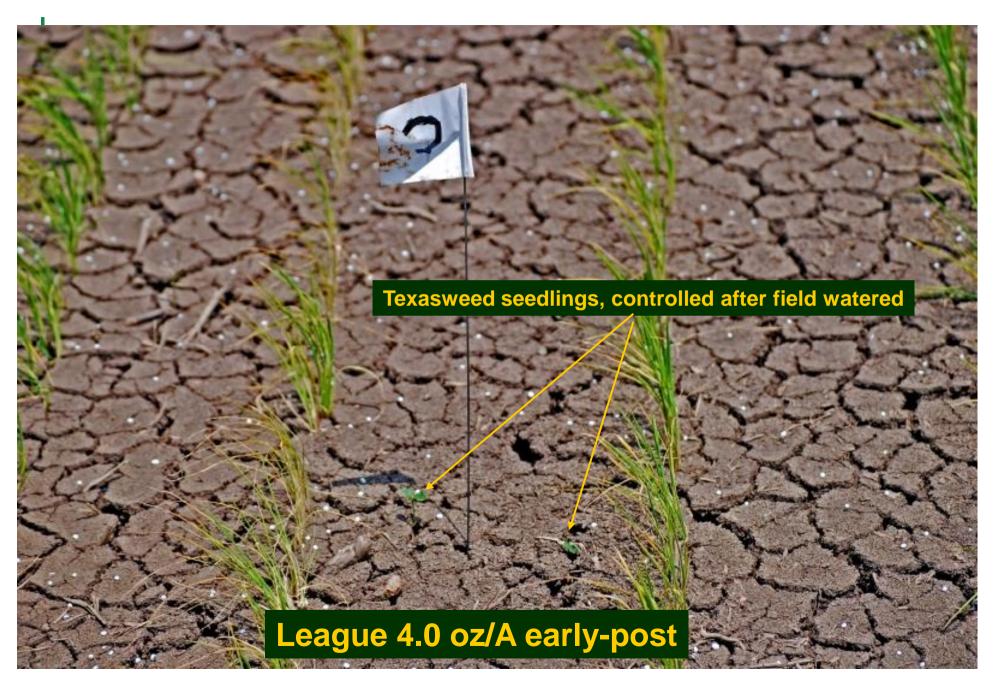
Key Rice Weeds Controlled by League

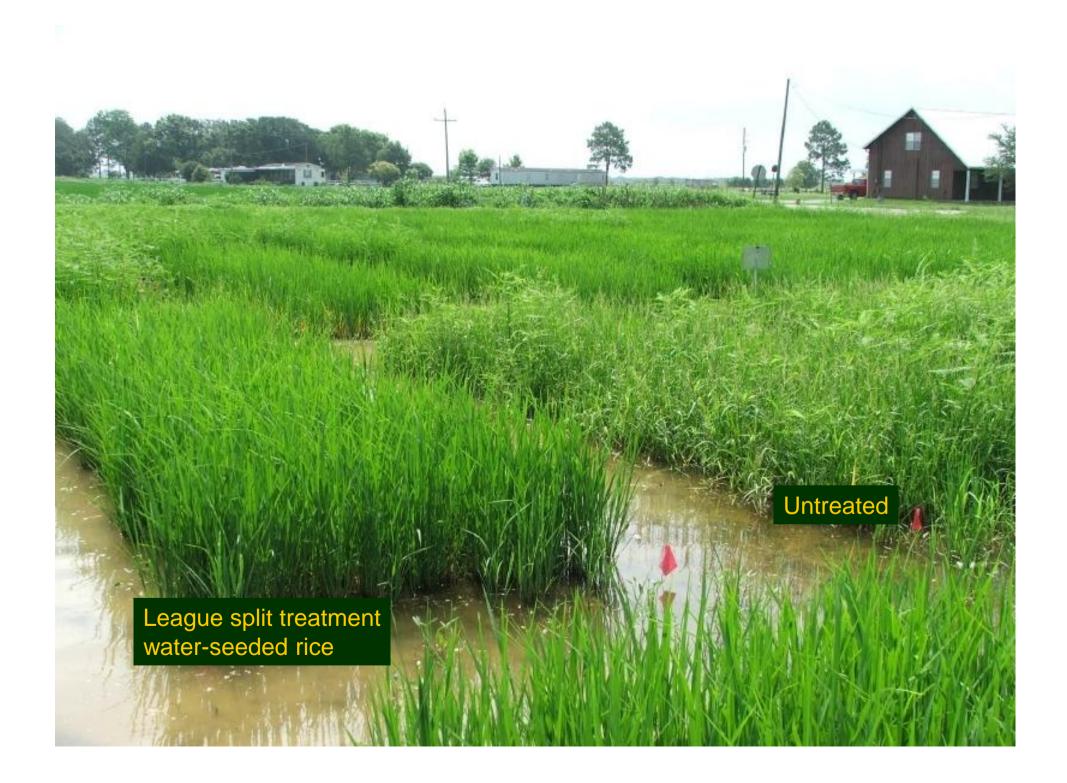
- § Dayflower
- § Ducksalad
- § Eclipta
- § Hemp Sesbania
- § Jointvetch (Indian, Northern)
- § Pigweed ¹
- § Pitted Morningglory
- § Redstem (postemergence)
- § Rice Flatsedge
- § Ricefield Bulrush (preemergence)
- § Texasweed
- § Yellow Nutsedge

¹ Does not control ALS resistant species


Untreated Check

League 5.0 oz/A + Command





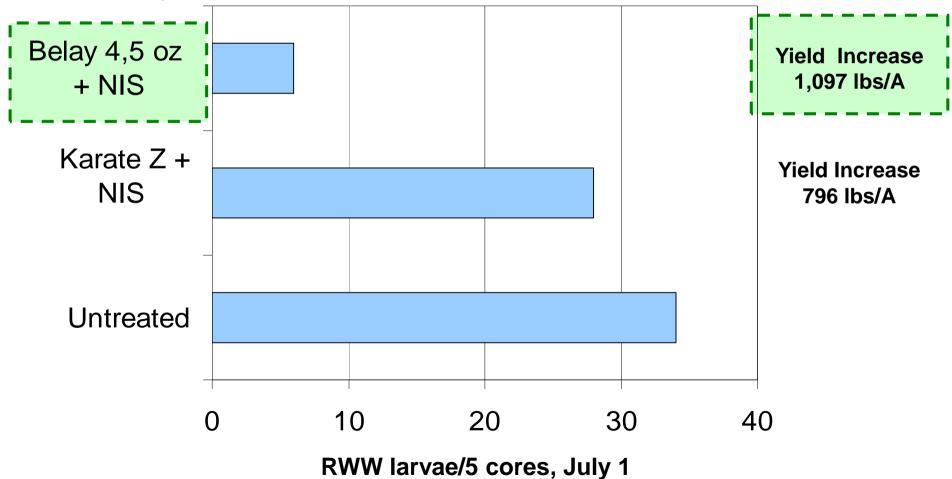
- § Clothianidin neonic
- § 4.5 fl oz/A
- § Rice water weevil control
- § Systemic and contact activity
- § Pre or post flood
- § Dry-seeded or <u>water-seeded</u>
- § Up to 3rd tiller
- § Excellent pyrethroid alternative
 - Longer application window (7 days pre-flood 10 days post)
 - Resistance management different AI/MOA

RWW control in dry-seeded rice

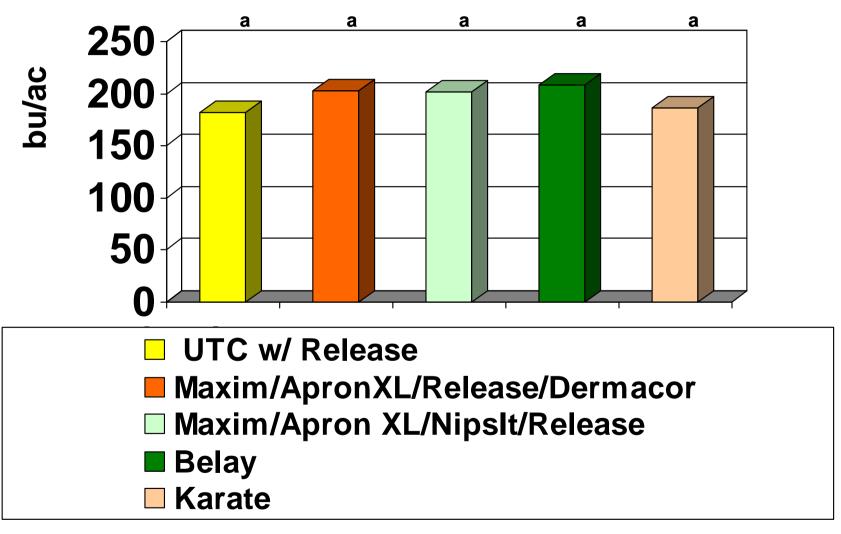
Dr. Mo Way, Beaumont, TX, 2011

	Rate	Timing	RWW/5 cores		Yield
Treatment	(fl oz/A)	a	Jun 21	Jul 1	(lb/A)
Untreated			94 a	34 a	6091 c
Karate $Z + NIS^b$	0.03 lb ai/A + 0.15% v/v	BF	21 b	28 a	6887 b
Belay 2.13SC + NIS	3.5 + 0.15 % v/v	BF	5 cd	7 cd	7247 ab
Belay 2.13SC + NIS	4.5 + 0.15 % v/v	BF	2 d	4 d	7372 ab

^a BF = before flood


^b NIS = non-ionic surfactant (Induce)

Belay for the control of RWW


Foliar program, delayed post-flood timing 10 days

Dr. Mo Way, Beaumont, TX,2011

Belay Insecticide yields compared to STs (2010)

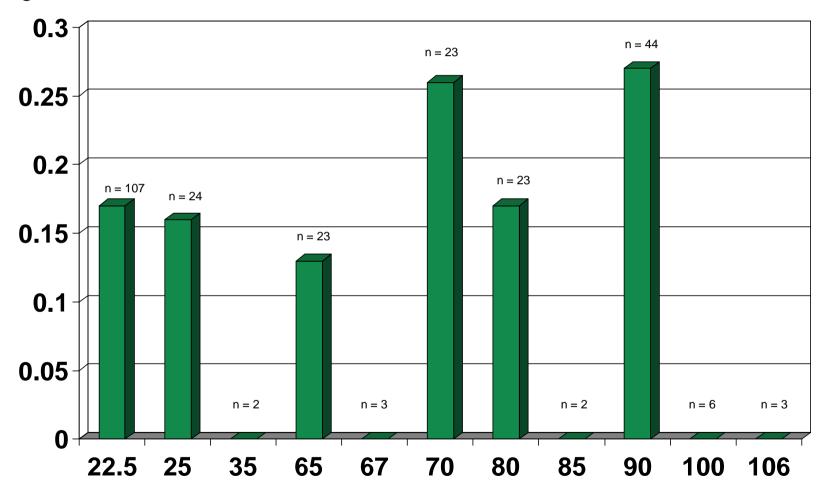
Summary across 8 locations (MS-3, AR, MO, TX-2, LA)

- § Clothianidin (lowest neonic water solubility)
- § Registered for use in soybeans, sorghum, canola, sugar beets, cereals
- § Rice registration approved August, 2012
- § Dry-seeded only
- § 1 application rate regardless of seeding rate
 - Low use rate with excellent efficacy = good ROI
- § Proven control of rice water weevil, grape colaspis and chinch bug
 - 2011 and 2012 EUP in Arkansas, Louisiana,
 Mississippi and Texas
 - Near 60,000 acres treated over 2 years

General Stats

- § Varieties
 - 24 total varieties
 - 9 conventional bred varieties
 - 6 Clearfield varieties
 - 9 total hybrids
 - ú 7 Clearfield hybrids
- § Seeding Rates
 - Ranged from 22 106 lbs/Ac

Results


2011 & 2012 Overall average

0.26 larvae / core

2012 Results by seeding Rate

Avg. larvae/core

Seeding rate (lbs seed/A)

Nipslt INSIDE RWW Control & Yield

Treatment	RWW/5 cores June 15	RWW/5 cores June 26	Yield (lb/A)
Untreated	77.5 a	41.3 a	6,321
Dermacor 2.5 fl oz/cwt	2.5 c	0.3 c	6,903
Cruiser 3.6 fl oz/cwt	11.0 b	13.8 b	6,614
Nipslt INSIDE 1.92 fl oz/cwt	1.5 c	6.0 bc	<u>7,140</u> N.S.

Dr. Mo Way, Texas A&M University, 2012