#### Soil test recommendations

Josh Lofton, Assistant Professor LSU-AgCenter LATMC pre-conference February 13<sup>th</sup>, 2013



#### **Presentation outline**

- Soil fertility principles
- What is the process of soil sampling
  - Soil collection
  - Lab analysis
  - Interpretation

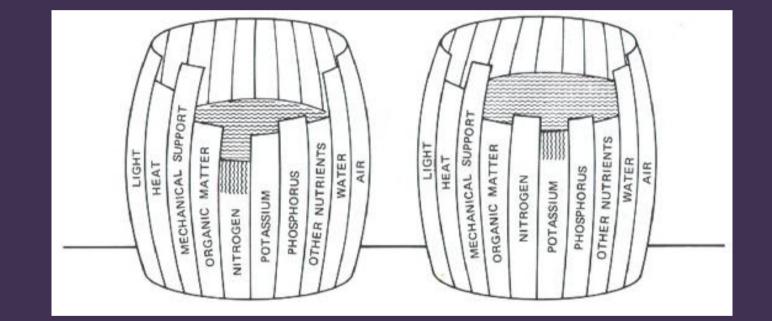
#### 14 Essential elements

#### • Needed by all crops

- Complete its life cycle
  - Yield
- Divided based on crop uptake

| Soil          | obtained nutrients |       |
|---------------|--------------------|-------|
| Primary Macro | Secondary Macro    | Micro |
| Ν             | Ca                 | Fe    |
| Р             | Mg                 | В     |
| K             | S                  | Cu    |
|               |                    | Cl    |
|               |                    | Mn    |
|               |                    | Mo    |
|               |                    | Zn    |
|               |                    | Ni    |
|               |                    |       |

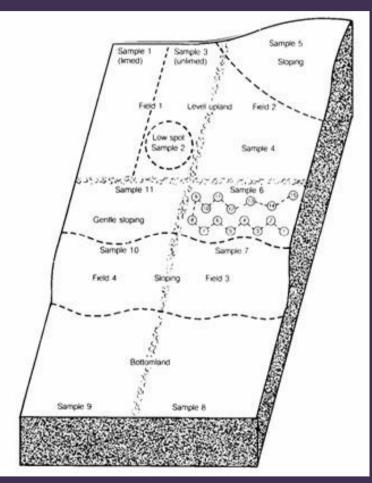



#### Soil fertility- More than just N

#### Justus Von Liebig

- Law of the minimum
- "If one crop nutrient is missing or deficient, plant growth will be poor, even if other elements are abundant."
- Emphasizes balanced nutrient management




#### Law of the minimum





#### Collecting a good soil sample

- Error in sampling
  - Occurs in soil sample
  - Little occurs during the procedures
- Collect samples
  - Divide field into management zones
  - Across a management zone
  - Proper depth





# Soil test methods- Extraction procedures

- Specific amount of soil
  - Small compared to sample
    - The weight of approximately two pennies
  - Makes collection vital
- Meant to represent soil solution conditions that are present in your soil
- Extraction removes exchangeable nutrients
- Collection of extract to measure on ICP, etc.



#### • Soil test reports typically contain

- Soil concentration
- Soil test class
- Recommendation

| Soil test- Class | Probability of response                   |
|------------------|-------------------------------------------|
| Very low         | Profitable response in all but rare cases |
| Low              | Profitable response in most seasons       |
| Medium           | Average response over years is profitable |
| High             | Occasional profitable response            |
| Vonuliah         | Profitable response during the season of  |
| Very High        | application unlikely                      |



| Element (Mehlich3) | Value    | Corn (field) | Soybeans  |
|--------------------|----------|--------------|-----------|
| pH (1:1 Water)     | 5.53     | Low          | Low       |
| Phosphorus, ppm    | 4.19     | Very Low     | Very Low  |
| Potassium, ppm     | 70.98    | Low          | Low       |
| Calcium, ppm       | 1,007.23 | Very High    | Very High |
| Magnesium, ppm     | 242.68   | Very High    | Very High |
| Sodium, ppm        | 32.32    | Optimum      | Optimum   |
| Sulfur, ppm        | 11.01    | Low          | Low       |
| Copper, ppm        | 1.04     | High         | High      |
| Zinc, ppm          | 0.44     | Low          | Low       |

| Soil test K | Category  |
|-------------|-----------|
| 0-68        | Very low  |
| 69-114      | Low       |
| 115-159     | Medium    |
| 160-182     | High      |
| >182        | Very high |

| Element (Mehlich3) | Value    | Corn (field) | Soybeans  |
|--------------------|----------|--------------|-----------|
| pH (1:1 Water)     | 5.53     | Low          | Low       |
| Phosphorus, ppm    | 4.19     | Very Low     | Very Low  |
| Potassium, ppm     | 70.98    | Low          | Low       |
| Calcium, ppm       | 1,007.23 | Very High    | Very High |
| Magnesium, ppm     | 242.68   | Very High    | Very High |
| Sodium, ppm        | 32.32    | Optimum      | Optimum   |
| Sulfur, ppm        | 11.01    | Low          | Low       |
| Copper, ppm        | 1.04     | High         | High      |
| Zinc, ppm          | 0.44     | Low          | Low       |

| Soil test K | Category  |
|-------------|-----------|
| 0-68        | Very low  |
| 69-114      | Low       |
| 115-159     | Medium    |
| 160-182     | High      |
| >182        | Very high |

Expected pH / Acre with adding Lime

#### RECOMMENDATION

|              |                     |          |                  |        |              | and the second second |
|--------------|---------------------|----------|------------------|--------|--------------|-----------------------|
| <u>Crop</u>  | Form Units: lb/Acre | Nitrogen | <b>Phosphate</b> | Potash | <u>1 Ton</u> |                       |
| corn (field) | corn grain          | 120-160  | 80               | 60     | 6.54         |                       |
| 3.2 55       |                     |          |                  |        | High         |                       |

| Element (Mehlich3) | Value    | Corn (field) | Soybeans  |
|--------------------|----------|--------------|-----------|
| pH (1:1 Water)     | 7.63     | High         | High      |
| Phosphorus, ppm    | 38.64    | High         | High      |
| Potassium, ppm     | 83.74    | Low          | Low       |
| Calcium, ppm       | 2,645.27 | Very High    | Very High |
| Magnesium, ppm     | 111.82   | Very High    | Very High |
| Sodium, ppm        | 12.84    | Optimum      | Optimum   |
| Sulfur, ppm        | 12.82    | Medium       | Medium    |
| Copper, ppm        | 1.74     | High         | High      |
| Zinc, ppm          | 3.70     | High         | High      |

| Element (Mehlich3) | Value    | Corn (field) | Soybeans  |
|--------------------|----------|--------------|-----------|
| pH (1:1 Water)     | 7.63     | High         | High      |
| Phosphorus, ppm    | 38.64    | High         | High      |
| Potassium, ppm     | 83.74    | Low          | Low       |
| Calcium, ppm       | 2,645.27 | Very High    | Very High |
| Magnesium, ppm     | 111.82   | Very High    | Very High |
| Sodium, ppm        | 12.84    | Optimum      | Optimum   |
| Sulfur, ppm        | 12.82    | Medium       | Medium    |
| Copper, ppm        | 1.74     | High         | High      |
| Zinc, ppm          | 3.70     | High         | High      |

#### RECOMMENDATION

| Crop         | Form Units: lb/Acre | Nitrogen | <b>Phosphate</b> | Potash |
|--------------|---------------------|----------|------------------|--------|
| corn (field) | corn grain          | 120-160  | 0                | 60     |

| Element (Mehlich3) | Value    | Corn (field) | Soybeans  |
|--------------------|----------|--------------|-----------|
| pH (1:1 Water)     | 6.04     | Optimum      | Optimum   |
| Phosphorus, ppm    | 35.36    | High         | High      |
| Potassium, ppm     | 388.54   | Very High    | Very High |
| Calcium, ppm       | 4,275.98 | Very High    | Very High |
| Magnesium, ppm     | 906.04   | Very High    | Very High |
| Sodium, ppm        | 17.30    | Optimum      | Optimum   |
| Sulfur, ppm        | 9.41     | Low          | Low       |
| Copper, ppm        | 5.67     | High         | High      |
| Zine, ppm          | 3.59     | High         | High      |

| Element (Mehlich3) | Value    | Corn (field) | Soybeans  |
|--------------------|----------|--------------|-----------|
| pH (1:1 Water)     | 6.04     | Optimum      | Optimum   |
| Phosphorus, ppm    | 35.36    | High         | High      |
| Potassium, ppm     | 388.54   | Very High    | Very High |
| Calcium, ppm       | 4,275.98 | Very High    | Very High |
| Magnesium, ppm     | 906.04   | Very High    | Very High |
| Sodium, ppm        | 17.30    | Optimum      | Optimum   |
| Sulfur, ppm        | 9.41     | Low          | Low       |
| Copper, ppm        | 5.67     | High         | High      |
| Zine, ppm          | 3.59     | High         | High      |

#### RECOMMENDATION

| Crop         | Form Units: lb/Acre | Nitrogen | <b>Phosphate</b> | Potash |
|--------------|---------------------|----------|------------------|--------|
| corn (field) | com grain           | 120-160  | 0                | 0      |

#### The real decisions

|                    |                     | 3            | 15        |                             |                                                                                                                               |
|--------------------|---------------------|--------------|-----------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Element (Mehlich3) | Value               | Corn (field) | Soybeans  | Soil test- Class            | Probability of response                                                                                                       |
| pH (1:1 Water)     | 7.32                | High         | High      | Very low<br>Low<br>→ Medium | Profitable response in all but rare cases<br>Profitable response in most seasons<br>Average response over years is profitable |
| Phosphorus, ppm    | 24.15               | Medium       | Medium 🧲  | - High                      | Occasional profitable response                                                                                                |
| Potassium, ppm     | 340.46              | Very High    | Very High |                             | Profitable response during the season of                                                                                      |
| Calcium, ppm       | 3,750.06            | Very High    | Very High | Very High                   | application unlikely                                                                                                          |
| Magnesium, ppm     | <mark>809.14</mark> | Very High    | Very High |                             |                                                                                                                               |
| Sodium, ppm        | 12.05               | Optimum      | Optimum   |                             |                                                                                                                               |
| Sulfur, ppm        | 12.83               | Medium       | Medium    |                             |                                                                                                                               |
| Copper, ppm        | 4.26                | High         | High      |                             |                                                                                                                               |
| Zine, ppm          | 2.17                | Medium       | Medium    |                             |                                                                                                                               |

#### The real decisions

|                    |             | a (2.10)     |           |           |                  |                                           |
|--------------------|-------------|--------------|-----------|-----------|------------------|-------------------------------------------|
| Element (Mehlich3) | Value       | Corn (field) | Soybeans  |           | test- Class      | <b>J</b>                                  |
| pH (1:1 Water)     | 7.32        | High         | High      |           | ery low          | Profitable response in all but rare cases |
| 1                  |             |              |           |           | Low              | Profitable response in most seasons       |
| Phosphorus, ppm    | 24.15       | Medium       | Medium 🗲  |           | /ledium          | Average response over years is profitable |
| Potassium, ppm     | 340.46      | Very High    | Very High |           | High             | Occasional profitable response            |
| rotassium, ppm     | 540.40      | verynign     | very High |           | o mulliada       | Profitable response during the season of  |
| Calcium, ppm       | 3,750.06    | Very High    | Very High |           | e <b>ry High</b> | application unlikely                      |
| Magnesium, ppm     | 809.14      | Very High    | Very High |           |                  |                                           |
| inagitestain, ppin | 005111      | rery mgn     | very mgn  | 0         |                  |                                           |
| Sodium, ppm        | 12.05       | Optimum      | Optimum   |           |                  |                                           |
| Sulfur, ppm        | 12.83       | Medium       | Medium    | 2         |                  |                                           |
| Copper, ppm        | 4.26        | High         | High      |           |                  |                                           |
| Zine, ppm          | 2.17        | Medium       | Medium    |           |                  |                                           |
|                    |             |              |           |           |                  |                                           |
| RECOMMENDATION     |             |              |           |           |                  |                                           |
| Crop               | Form Units: | lb/Acre      | Nitrogen  | Phosphate | e Potash         |                                           |
| corn (field)       | com grain   |              | 120-160   | 40        | 0                |                                           |
|                    | <b>0</b>    |              |           |           |                  |                                           |

#### Interpreting soil test reports

- Knowing when and how much to fertilize depends on approach
  - Sufficiency
  - Build-maintenance



# Sufficiency method

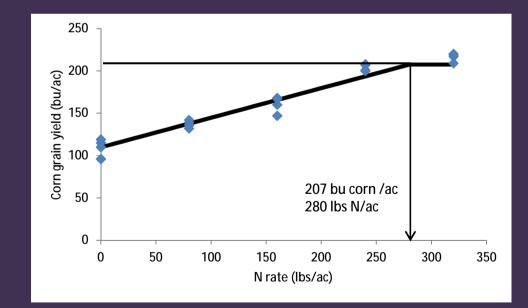
- Attempt to maximize profit in the given year
- Applications are typically needed yearly
  - Unless soil test populations are high
- Placement becomes critical
  - Lower soil test levels since not building
- Method used
  - High input cost and funds unavailable
  - Renting property for short-term



#### **Building-maintenance**

- Focused on P and K
- Applications
  - Current year
  - Future production years
- Less risk associated with uncertainties
- Needs lots of planning to ensure
  - Economical
  - Environmental




# How to choose which approach is correct

- Short term cost of building approach
   Offers long-term flexibility
- Determine what fits best into
  - Rotations
  - Cultural management systems
  - Cultivar/hybrid selection
  - Environmental conditions



#### **N-recommendations**

- Based on in-field calibration trials
  - Many soil conditions
  - Many years





#### Take home points

- Balanced nutrition is critical
  - Will not see response if other deficiencies are not accounted for
- Soil sampling allows for determination of deficient nutrients
  - Proper sampling
  - Proper interpretation
  - Plan on application based on the right approach for your production system



#### Water sensors



#### Using water sensors

- "Checkbook" approach for soil water can allow for easy determination of crop needs
- Must have some way to measure precipitation
  - Total rainfall during a given cycle
  - Direct measurement of soil water content





#### How to measure soil water content

- Tensiometers
- WaterMark<sup>®</sup> sensors
- Electric sensors



#### Tensiometers

- Measures how tightly the soil holds water
  - Tells you how energy need to for plant uptake
- Dry soil
  - Water drains out of the column and increases pressure (reading)
- Moist soil
  - Water fills the column and decrease pressure



#### Tensiometers

Requires suction to be ever-present

 If not needs recalibration
 Problem in our shrink-swell soils





#### Watermark<sup>®</sup> sensors

- Functions similar to gypsum blocks

   Enclosed in capsule to minimize salinity effects
- Measures resistance flow between two electrodes
  - As moisture enters decrease resistance
  - Resistances is automatically transferred to soil moisture readings



#### Watermark<sup>®</sup> sensors

- Very user friendly
  - Relatively cheap
  - Somewhat easy to install
  - Somewhat stable and sturdy
- Extremely focused
  - Only measures soil moisture
  - Lacks long-term data collection units with many companies
  - Typically requires a converter



#### Soil moisture sensors

- Very commercially available
   Variety of outputs
- Have ability to measure multiple soil components
  - **–** EC
  - Heat
- Measures water potential in the surrounding soil



#### Soil moisture sensors

- Can be relatively expensive
- Installation can be time consuming
- Sensors are more sensitive
  - Both with sturdiness and measurement
- Readings can be taken
  - Over multiple components
  - Continually recorded



#### Take home points

- All sensors have their own merit
  - Some are more beneficial in certain areas compared to other
  - Something is better than nothing or guessing



#### Thank you and Questions?

