SOIL FERTILITY WORKSHOP: Soil Fertility for Louisiana Row Crops

Louisiana Agricultural Technology & Management Conference Paragon Casino Resort, Marksville, LA February 13, 2013

Brenda Tubana Assistant Professor of Soil Fertility School of Plant, Environmental, & Soil Sci. LSU AgCenter

Sweeten 400 cans of pop3 gal. ethanol

1 bushel = 56 lbs

- 1.5 gal. biodiesel and 48 lb protein-rich meal
- 11 lbs oil and 48 lb soybean meal

1 bushel = 60 lbs

- 215 pairs of jean - 3,085 diapers - 313,600 \$100 bills

1 bale = 500 lbs

	Grain, lb/bu	Soybean, lb/bu	Cotton, lb/bale
Ν	0.75	4.0*	32
$P_{2}O_{5}$	0.44	0.8	14
K ₂ 0	0.29	1.4	19

Ability of the Soil to Supply

- One important fact remains--soils have <u>finite</u> <u>reserves</u> of the nutrient elements essential for plant growth.
- How much soil we have?

Courtesy of: *The Natural Resources Conservation Service*, Syracuse, NY, U.S. Department of Agriculture

Components of the soil

Soil fertility is the result of a number of different soil factors and processes working together. These relates to soil <u>physical</u>, <u>chemical</u>, and <u>biological</u> components that make up the soil.

Root hair Bacteria (i.e., sand) particle matter

LIFE 8e, Figure 36.4

LIFE: THE SCIENCE OF BIOLOGY, Eighth Edition: © 2007 Sinauer Associates, Inc. and W. H. Freeman & Co.

Tissue levels of essential nutrients

95%

Factors Affecting Plant Availability of Various Soil Nutrients

Factor	Ν	Р	K	S	Ca & Mg	Micros
Soil pH	X	X	X	X	X	X
Moisture	X	X	X	X	X	Х
Temperature	X	X	X	X	X	X
Aeration	X	X	X	X	X	X
Soil Organic Matter	X	X		X	X	X
Amount of Clay	X	X	X	X	X	X
Type of Clay		X	X		X	X
Crop Residues	X	X	X	X	X	X
Soil Compaction		X	X			
Nutrient Status of Soil		X	X		X	
Other Nutrients		X	X		X	
Сгор Туре	X	X		X		X
Cation Exchange Capacity			X		X	X
% CEC Saturation					X	

Source: IPNI

Optimum soil pH

Incorrect soil pH resulted in P deficiency

Loess soil (Winnsboro)

Zinc deficiency in high pH Red River alluvial soil

Cornerstone of Fertilizer Best Management Practices

Right Rate

Match amount of fertilizer to crop needs

- Soil testing
- Yield goal analysis
- Crop removal balance
- Nutrient management planning
- Plant tissue analysis
- Record keeping
- Variable rate technology
- Site-specific management

Right Place

Keep nutrients where crops can use them

- Application method
- Incorporation of fertilizer
- Buffer strips
- Conservation tillage
- Cover Cropping

Right Time

Match nutrients available when crops need them

- Application timing
- Controlled release technologies
- Inhibitors
- Fertilizer product choice

Right Source

Match fertilizer type to crop needs

- Select appropriate fertilizer and on-farm nutrient sources for the cropping system
- Soil testing
- N, P, K secondary and micronutrient
- Enhanced efficiency fertilizers
- Nutrient management planning

Source: IPNI

Factors Affecting Nutrient Requirements

- Crop species (and cultivar)
- Yield level
- Soil type
- Climatic conditions
- Cultural management practices
 - Tillage system (conventional tillage, strip tillage, notill)
 - Residue management
 - Others: cover crops, crop rotations, row configurations

Correcting soil acidity in soybean

Presidedress soil nitrate level

- Check Plot 30 bu/ac
- 240 lb N 210 bu/ac

• St. Joseph, clay, <12 lbs NO₃-N/A

Check Plot – 70 bu/ac
120 lb N – 140 bu/ac

• Winnsboro, silt loam, 33 lbs NO₃-N/A

Zinc Source Effect on Corn Yield and Application Rate (Red River alluvial soils)

Crop Age Effect on N Requirement

SUGAR YIELD	2007	2008	2009	2010
	Plant Cane	1 st Ratoon	2 nd Ratoon	3 rd Ratoon
Variety Effect	<0.0001	<0.0001	<0.0001	NS
HoCP 96-540	9835	7888	7196	7844
L99-226	9426	7232	5865	7556
LCP85-384	7542	5425	5562	6985
Nitrogen Effect	<0.05	<0.0001	<0.0001	<0.01
check	8982	6110	4722	6298
40 lbs N/ac	9050	6922	6454	7795
80 lbs N/ac	9173	7150	6809	7684
120 lbs N/ac	8529	7212	6837	8068

Nitrogen: Surface Volatilization

Phosphorus Solubility

SOIL **INORGANIC P ORGANIC P** Non-Labile Soil Labile Solution •Humic acid •Weakly sorbed •Specific adsorption to Fe, Inositol phosphates phosphates •Phosphate released Al.+ Mn oxides •Phospholipids •Newlyfrom labile and broken clay •Phosphate sugars precipitated Fe, Al, pool or edges or Mn-P in added via •Nucleic acids Precipitation of acid soils fertilizer Ca or Mg-P at •Newly pH>7 precipitated •Precipitation of Ca or Mg-P in Fe, Al, or Mn-P at alkaline soils pH<5

Potassium Fixation

T.S. Murrell, 2004

Fertilizer Placement

Cornerstone of Fertilizer Best Management Practices

Right Rate

Match amount of fertilizer to crop needs

- Soil testing
- Yield goal analysis
- Crop removal balance
- Nutrient management planning
- Plant tissue analysis
- Record keeping
- Variable rate technology
- Site-specific management

Right Place

Keep nutrients where crops can use them

- Application method
- Incorporation of fertilizer
- Buffer strips
- Conservation tillage
- Cover Cropping

Right Time

Match nutrients available when crops need them

- Application timing
- Controlled release technologies
- Inhibitors
- Fertilizer product choice

Right Source

Match fertilizer type to crop needs

- Select appropriate fertilizer and on-farm nutrient sources for the cropping system
- Soil testing
- N, P, K secondary and micronutrient
- Enhanced efficiency fertilizers
- Nutrient management planning

Source: IPNI

Major Row-Crops Grown in Louisiana

Nitrogen Fertilizer Management (Mobile Nutrient)

Сгор	Rate	Placement	Time	Source
Sugarcane	Response Trial	Inject	Spring	UAN
Cotton	Response Trial	Dribble	Preplant Sidedress	UAN
Soybean	-	-	-	-
Corn	Response Trial	Dribble, Inject	Preplant Sidedress	UAN

Rate – refine based on soil type, irrigated vs. dryland, and crop age (cane)

P and K Fertilizer Management (Immobile Nutrients)

Сгор	Rate	Placement	Time	Source
Sugarcane	Soil testing	In furrow	Early spring	TSP/MOP
Cotton		Broadcast, in furrow.	Preplant	TSP/MOP *
Soybean			-	TSP/MOP *
Corn			Preplant	TSP/MOP *

* Manure, compost and other organic sources

Thank You!