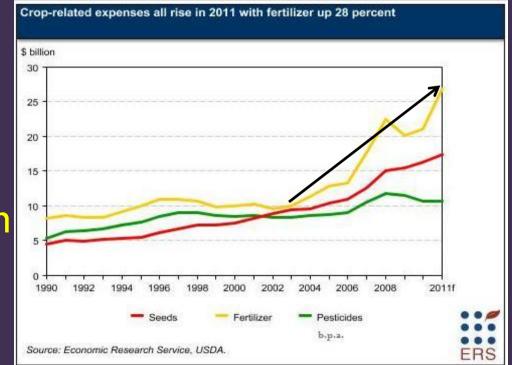
Soybean Phosphorus and Potassium

Josh Lofton, Ph.D. Assistant Professor LSU-AgCenter LATMC February 14th, 2013

Presentation Outline

- General soil fertility and crop nutrition in soybean production
- LSU AgCenter research in P and K management in soybeans
- Take home points

Soybean production


- Important crop to Louisiana
- Around 1 to 1.2 million acres in 2012*
 - Nearly \$700
 million gross farm
 income

Why should we be interested in fertilizers?

- One of this highest cost production inputs
- Recent years
 - Continual increase in price
 - Some signs of slowing
 - No signs of decrease

14 Essential elements

• Needed by all crops

- Complete its life cycle
 - Yield
- Divided based on crop uptake

Soil obtained nutrients						
Primary Macro	Secondary Macro	Micro				
Ν	Ca	Fe				
Р	Mg	В				
K	S	Cu				
		Cl				
		Mn				
		Mo				
		Zn				
		Ni				
		SO				
		Ag Center				

Research & Extension

14 Essential elements

• Needed by all crops

- Complete its life cycle
 - Yield
- Divided based on crop uptake
- Soybeans are legumes
 - N not typically managed

Soil obtained nutrients						
Primary Macro	Secondary Macro	Micro				
N	Ca	Fe				
Р	Mg	В				
Κ	S	Cu				
		C1				
		Mn				
		Mo				
		Zn				
		Ni				
		Ag Center				

Soybean P and K uptake*

		Uptake (60 bushel
	Uptake	soybeans)
	lbs/bu	lbs/ac
Phosphorus	0.96	58
Potassium	3.42	205

- Phosphorus
 - Lower uptake compared to K (as well as N demand)
- Potassium
 - Over triple the uptake of P
 - Very high uptake compared to application rate

Soybean P and K removal

		Removal (60
	Removal	bushel soybeans)
	lbs/bu	lbs/ac
Phosphorus	0.9	54
Potassium	1.5	90

- Actually what is taken off the field at harvest
 - Remainder is re-deposited on soil surface and can potential become available to future crops
- Phosphorus
 - Nearly all uptake is removed at harvest
- Potassium
 - Less than half (44%) is removed at harvest

Nutrient uptake in soybeans

- Phosphorus accumulates in seeds are pods
 Still needed throughout the growing season
- Potassium accumulates in stems and leaves

	Stage	Ν		P_2O_5		K ₂ 0	
				—Ibs/a	ac —		
	Three tri-folates		30		6		27
	Six tri-folates		46		12		57
	Full bloom		171		40		149
	Pod Development		308		74		293
9	Soft Green		548		132		433
	Mature		494		112		397

Ohio Stat Extension Service

Questions?

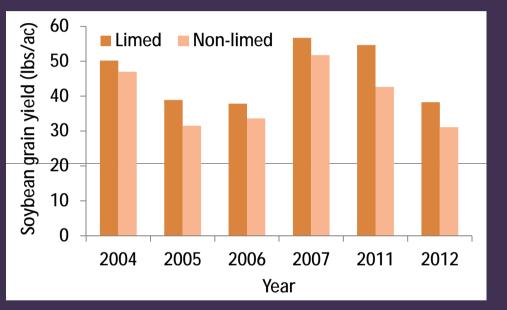
 How does P and K application affect soybean production systems?

 How are these applications influenced by soil pH?

P, K, Lime study in Soybeans (Upland Loess Soils)

- Location
 - Macon Ridge Research Station
- Investigated
 - P and K application rates
 - Both with and without lime applications
 - Stale-seedbed
 - Irrigated (center pivot)
 - Following all LSU AgCenter recommendations for cultural management

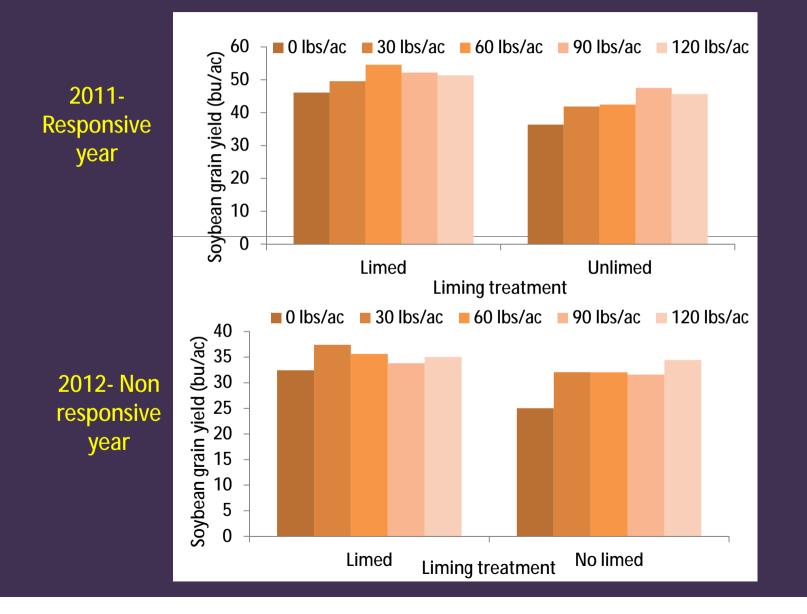
P, K, Lime study in soybeans


- Pre-plant soil samples taken yearly
 - Lime applied to half the plots when recommended
- P application
 0, 30, 60, 90, 120 lbs/ac
- K application
 - 0, 30, 60, 90, 120 lbs/ac
- At harvest
 - Grain harvested
 - Soil samples
 - 0-6
 - 6-12

Trt No.	P ₂ O ₅ K ₂ O Ibs/ac ⁻¹	Trt No.	$P_2O_5-K_2O$ Ibs./ac ⁻¹	Trt No.	P ₂ O ₅ -K ₂ O Ib/ac ⁻¹
1	0 - 0				
2	30 0	6	0 - 30	10	30– 30
3	60 – 0	7	0 — 60	11	60 – 60
4	90- 0	8	0—90	12	90–90
5	120-0	9	0–120	13	120–120

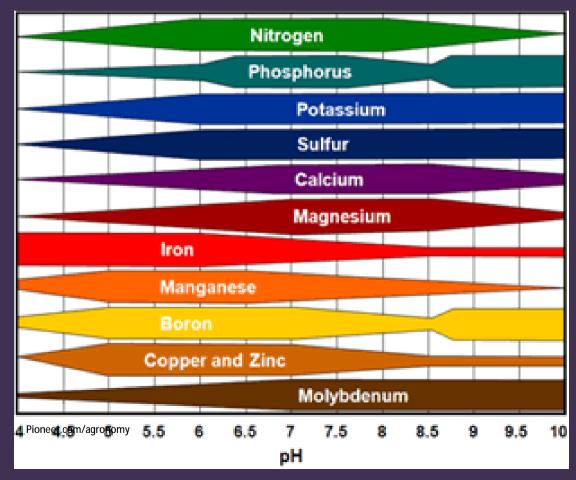
Effect of P, K, and Liming on yield

- P or K did not have a consistent significant effect on yields
 - Depended on soil test levels
- Ensuring optimum pH
 - Increase yield
 - Although may not be significant every year



Visualization of liming effect

How does liming effect P availability?


How does liming effect nutrient availability?

• Soil pH effects availability of all plant nutrients

How does liming effect nutrient availability?

• Soil pH effects availability of all plant nutrients

How does liming effect nutrient availability?

- Soil pH effects availability of all plant nutrients
- Soil P
 - Lower pH increase Iron and Aluminum binding
 - Higher pH increase Calcium and Magnesium binding

Take homes

- Balanced nutrition is critical
 - Cannot overcompensate for one deficiency with another nutrient
 - Ensure pH is optimum
 - Crop grown
 - Nutrient availability

Take homes

- Decline in natural P and K fertility in many soils across the state
 - Due to increased
 - Production
 - Yields
 - Make P and K management increasing critical
 - Soil sampling is key

Thank you and questions?

