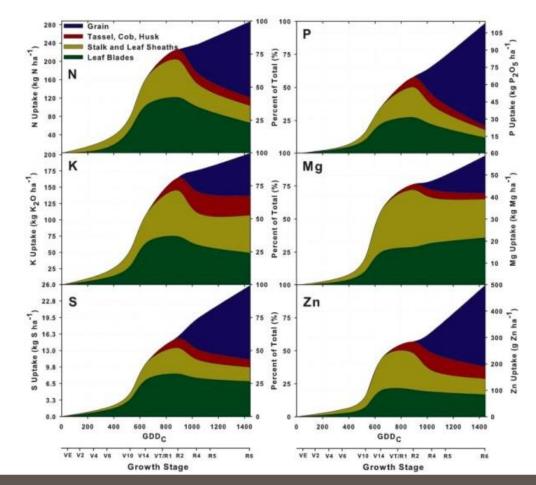
John Kruse, PhD Research Agronomist Koch Agronomic Service, LLC Bobby Golden, PhD Asst. Professor

Asst. Professor Mississippi State University

Wednesday February 12, 2014

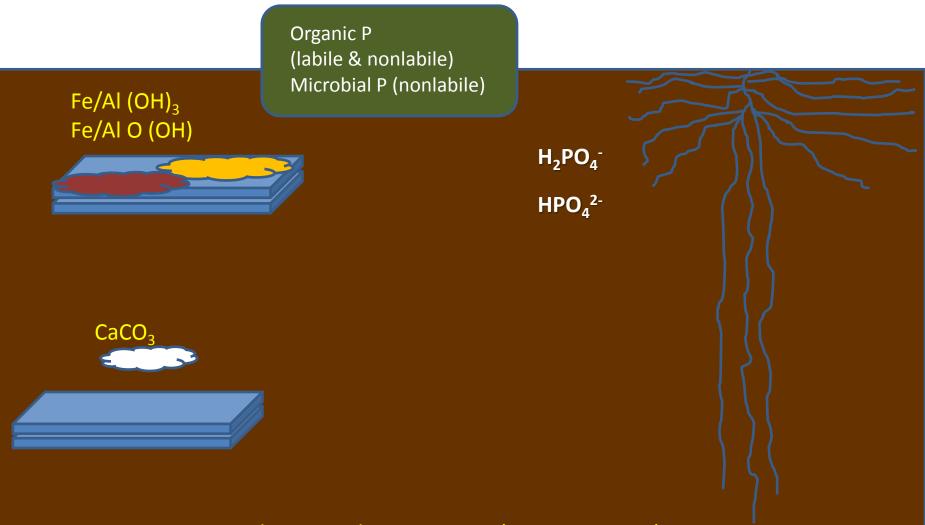
Managing P and Zn

Clear as mud...


P = the element Phosphorus

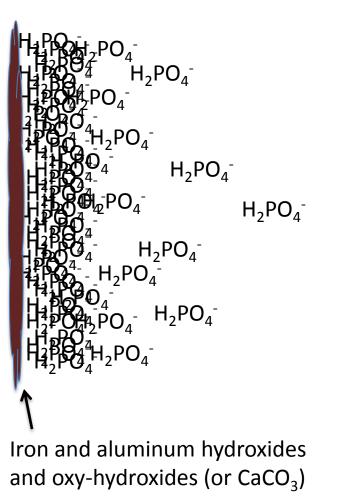
H₂PO₄⁻ = orthophosphate (form of plant uptake)

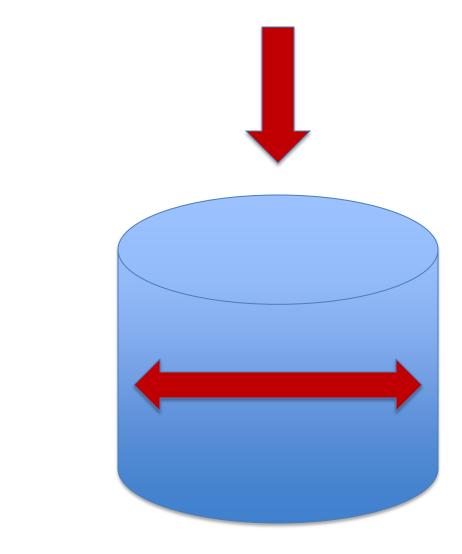
Soil test reports usually make recommendations in terms of P_2O_5


Plant Use and Uptake

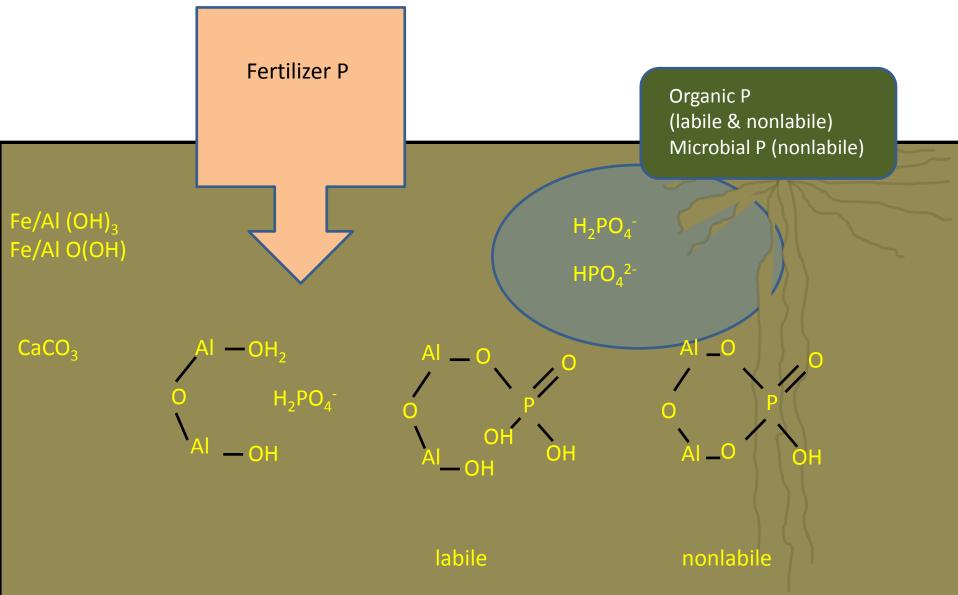
- Energy (ATP)
- DNA and RNA (cell division and protein synthesis)
- Phospholipids (cellular membranes)
- Seedling and root growth
- Substantial grain accumulation
- Manure implications (feed)

Crop	P205	Total crop removal (lbs/a)
Corn uptake (bu-1)	0.54	108 (200 bu)
Corn removal (bu-1)	0.35	70
% removed	65%	
Soybean uptake (bu-1)	1.1	66 (60 bu)
Soybean removal	0.73	44
% removed	66%	
Cotton uptake (bale-1)	22	66 (3 bale)
Cotton removal	14	42
% removed	64%	
Wheat-wtr. Uptake (bu-1)	0.68	41 (60 bu)
Wheat-wtr. Removal	0.48	29
% removed	71%	

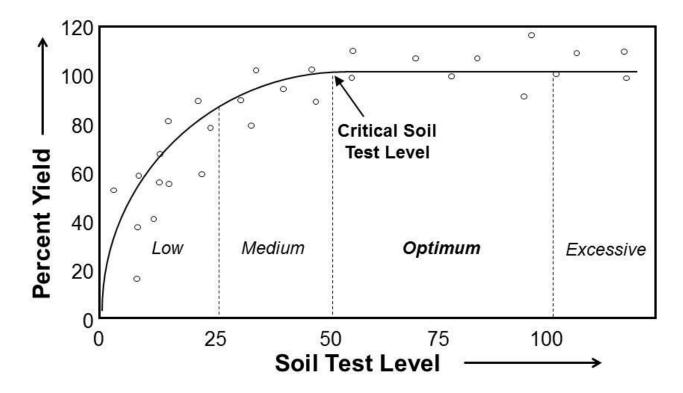

Phosphorus in the soil



Soil P moves by DIFFUSION (mm to microns)

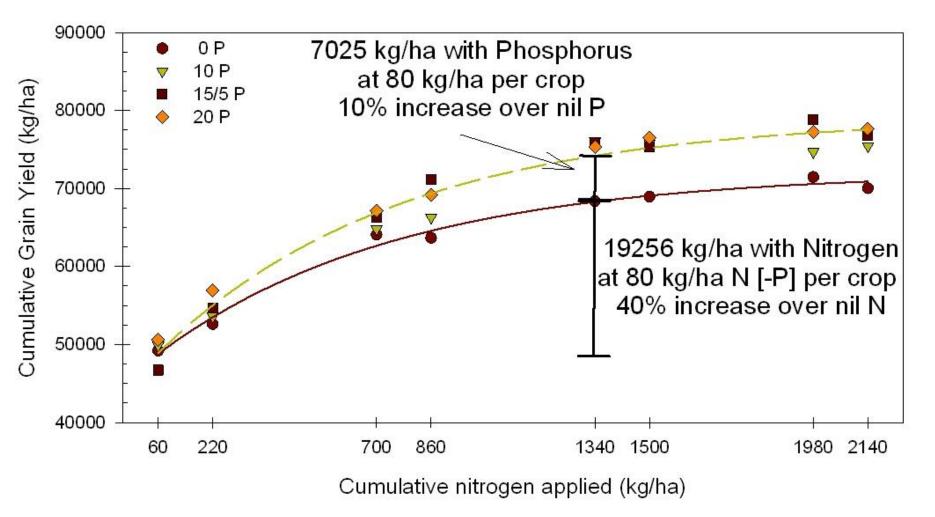

Phosphorus in the soil

Plant root



Phosphorus in the soil

Soil Test P – probability of response


"LOW (0-25 FertIndexValue). The nutrient concentration in the soil is inadequate for the growth of most plants and will very likely limit plant growth and yield. *There is a high probability of a favorable economic response to additions of the nutrient."*

Dr. Tubana: critical soil test P value: ~30 ppm (M3)

Credit: extension.udel.edu

N & P interaction

"Colonsay" Cumulative grain yield (kg/ha) from 1985-2003 of seventeen crops

Corn production research on low vs.

high to very high P-testing soils

- Location: SROC, Waseca
- Soils: Webster clay loam, tiled 75'
- Soil Test Bray P: 7 ppm (L) vs. 25 ppm (VH)
- Low P site mined with no P or K applied for previous 6 years
- Corn: 2005, 2006, 2007
- Soybean: 2006, 2007, 2008
- Potassium applied at 120-200 lb K₂O/A/yr
- Hybrids, varieties, planting dates, etc same for both L & VH sites each year
- Strip-till corn, No-till soybean

Corn yield as affected by soil P test and P placement					
P Ti	reatment	ΡT	est		
Rate	Placement	Low VH			
lb P ₂ O ₅ /A		bu	/A		
0					
50/40	Deep-band ^{1/}				
50/40	Pop-up				
50/40	Broadcast				
50/40	DB + Pop-up				
1/ C 7" halawi					

 $\frac{1}{6}$ 6-7" below soil surface under row.

University of Minnesota Driven to Discover™

Corn yield as affected by soil P test and P placement				
P 1	reatment	P 1	Fest	
Rate	Placement	Low VH		
lb P ₂ O ₅ /A		bı	ı/A	
0		148		
50/40	Deep-band ^{1/}	166		
50/40	Pop-up	166		
50/40	Broadcast	167		
50/40	DB + Pop-up	172		

 $\frac{1}{6}$ 6-7" below soil surface under row.

UNIVERSITY OF MINNESOTA Driven to Discover™

Corn yield as affected by soil P test and P placement				
Treatment	P	Fest		
Placement	Low	VH		
	bı	ı/A		
	148	193		
Deep-band ^{1/}	166	186		
Pop-up	166	194		
Broadcast	167	190		
DB + Pop-up	172	189		
	Treatment Placement Deep-band ^{1/} Pop-up Broadcast	TreatmentP TPlacementLow bu148Deep-band ^{1/} 166Pop-up166Broadcast167		

 $\frac{1/}{6}$ 6-7" below soil surface under row.

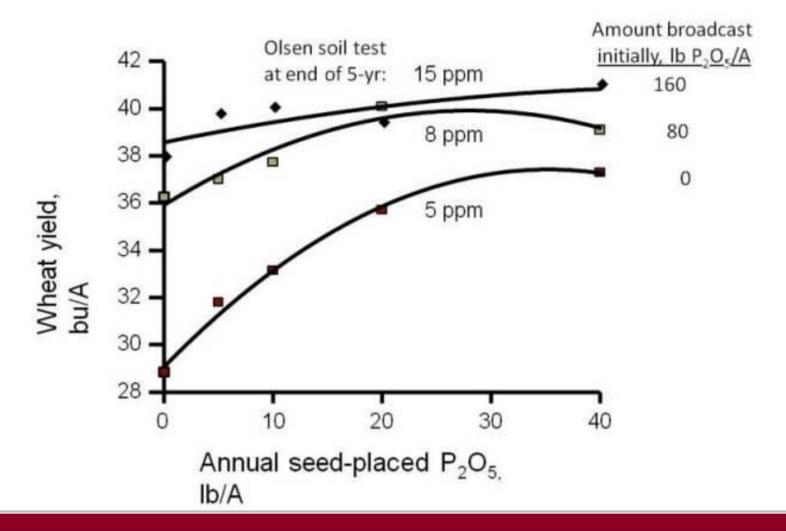
UNIVERSITY OF MINNESOTA Driven to Discover™

Soybean yield as affected by soil P test and P placement for previous corn crop

Residual P Treatment		PT	est	
Rate	Placement	Low	VH	
lb P ₂ O ₅ /A		bu/A/yr		
0				
50/40	Deep-band			
50/40	Pop-up			
50/40	Broadcast			
50/40	BD + Pop-up			

Soybean yield as affected by soil P test and P placement for previous corn crop

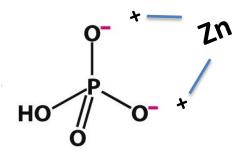
Residua	I P Treatment	ΡT	est
Rate	Placement	Low	VH
lb P ₂ O ₅ /A		bu//	4/yr
0		34.5	
50/40	50/40 Deep-band		
50/40	Pop-up	38.2	
50/40	Broadcast	37.1	
50/40	BD + Pop-up	40.8	

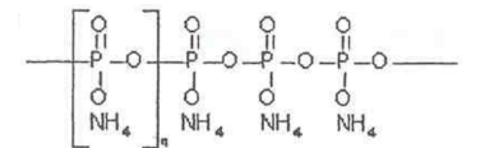


Soybean yield as affected by soil P test and P placement for previous corn crop

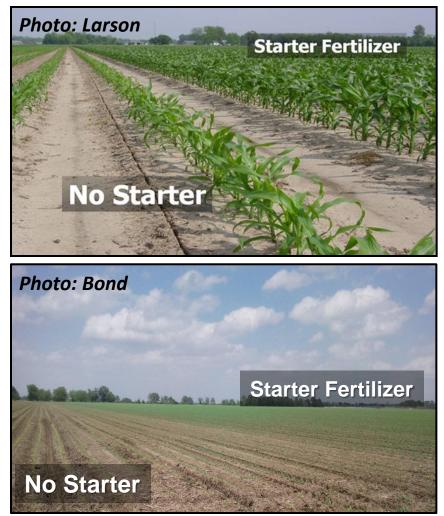
Residua	I P Treatment	PT	est	
Rate	Placement	Low	VH	
lb P ₂ O ₅ /A		bu/A/yr		
0		34.5	49.1	
50/40	Deep-band	38.5	49.1	
50/40	Pop-up	38.2	48.9	
50/40	Broadcast	37.1	48.4	
50/40	BD + Pop-up	40.8	49.3	

Wheat response to added P


UNIVERSITY OF MINNESOTA Driven to Discoversm


Phosphate Fertilizers

- SSP (0-20-0)
- TSP (0-46-0)
- MAP (11-52-0)
- DAP (18-46-0)
- APP (10-34-0)
- OP (6-24-6)
- Source: Rock Phosphate (Ca₁₀(PO₄)₆(X)₂ where X=F⁻, OH⁻, or Cl⁻ (apatites)
- Florida, Morocco, Russia, South Africa, China

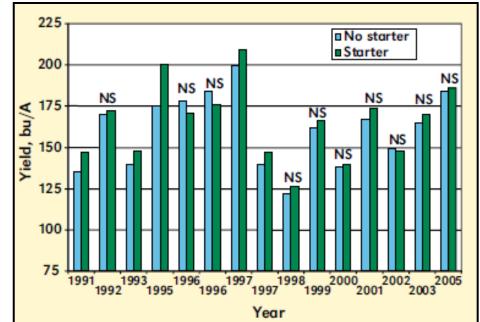


Orthophosphate and Ammonium Polyphosphate

- Beneficial when soils are cold and wet.
- Use 4 gal (max) APP/acre for wide rows.
- Provides a concentrated nutrient supply directly in the root zone of young plants
- Sequesters P from CaCO₃ in calcareous soils

Yield Increases most likely to occur:

- Planting reduced till
- Coarse textured; low
 O.M. soils
- Cold, poorly drained soils
- Fields with low soil test P
- High pH (calcareous) soil


Salt Index comparisons for commonly used starters, (expressed as lbs salt effect/gal)

Product	Analysis	Salt Index, (lb/gal)	Value Relative to 10-34-0
АРР	10-34-0	2.28	1.0
ОР	6-24-6	3.04	1.3
UAN	32-0-0	7.78	3.1
ATS	12-0-0-26S	30.9	13.6

Salt index adapted from Pioneer

- Early season plant growth increased in all trials.
- Plant height increase remains until tassel.
- Authors attributed growth increase to P₂O₅ content of starter.

Source: Mascagni et al., Better Crops 91:2 (2007)

Inconsistent with respect to increases in grain yield

Lower harvest moisture and earlier Mid silk dates when no yield response observation

Consistently enhances plant growth and maturity

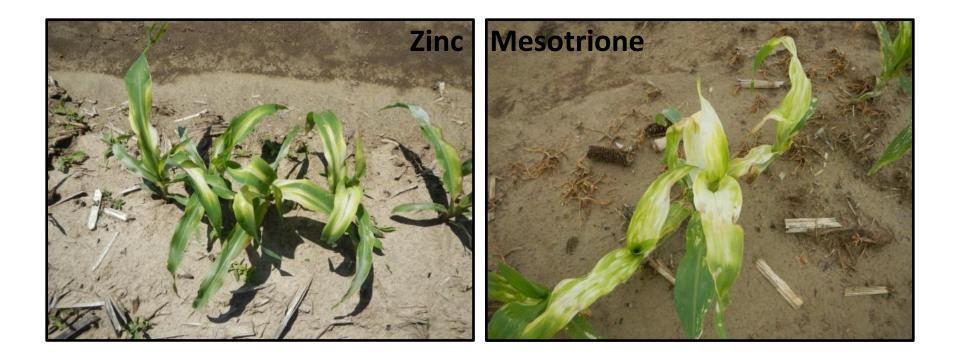
Phosphorus Summary

- P is very immobile
- Moves by diffusion
- Apply P to "sufficiency level" (30 ppm M3)
- If low soil test P, use a starter fertilizer at planting
- If sufficient soil test P, utilize crop replacement levels at a minimum
- Own-land versus rent-land strategies

Zinc Agronomics

Zinc in Soil and Plant Tissue

- Immobile Nutrient (plant & soil)
- Soil CEC (mostly SOM)
- Challenge: High pH and high soil test P
- A key Micronutrient for Corn
 - Relatively high demand by the plant
 - Enzyme synthesis
 - Necessary for chlorophyll formation
 - Involved in growth hormone and auxin production
 - Co Factor for alcohol dehydrogenase pathway


Zinc Promotes Earlier Tassel

recall the importance of cool temperatures during pollination

Herbicide Injury or Nutrient Deficiency ?

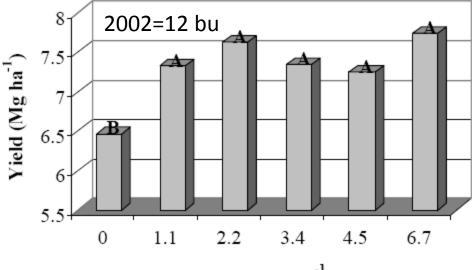
Zinc Deficiency Symptomology

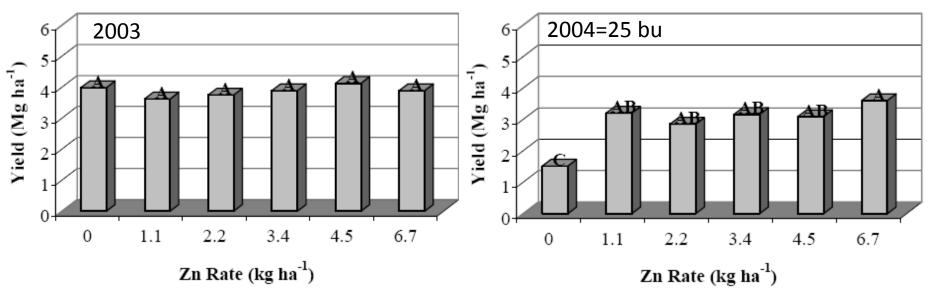
Soil and tissue test Zn interpretation

	Nitrogen %	Sulfur %	Phosphorus %	Potassium %	Magnesium %	Calcium %	Sodium %	Boron	Zinc	Manganese		Copper	Aluminum
								ppm	ppm	ppm	ppm	ppm	ppm
Analysis	4.00	0.65	0.57	2.03	0.62	1.78	1.58	57	11	134	448	17	111
Normal	3.00	0.30	0.15	0.75	0.30	2.00	0.00	15	20	10	50	5	0
Range	4.49	0.89	0.59	2.49	0.89	3.99	0.14	100	100	400	300	30	500
	N/S	N/K	P/S	P/Zn	K/Mg	K/Mn	Ca/B	Fe/Mn					
Actual Ratio	6.2	2.0	0.9	518.2	3.3	151.5	312.3	3.3					
Expected Ratio	6.3	2.3	0.6	61.7	2.7	79.0	520.9	0.9					
Very High													
High													
Sufficient													
Low													
Deficient													
	N	s	Р	к	Mg	Ca	Na	В	Zn	Mn	Fe	Cu	AI
	xpper (Cu)												
iro	on (Fe)												
Ma	anganese (I	Mn)											
Zir	nc (Zn)		M3	0.7 ppm									
Se	dium (Na)												
So	oluble Salts												
Or	ganic Matte	er	LOI 2	1% ENR	86								
Nit	trate Nitrog	en											

Methods of Zn fertilization

- Soil Applied
 - 5-10 lb Zn/acre as a granular fertilizer
 - Adjust rates based on water solubility of Zn sources (oxides, sulfates and oxysulfates)
- Foliar Applied
 - Apply 1-2 lb Zn/acre after emergence
 - Chelated for soil application
 (Little foliage for interception)
 - Sulfate for foliar application (larger plants)




Zinc research in corn (Dr. Dustin Harrell, 2002-2004)

Year	Р	Zn
	Mehl	ich III
2002	53	1.32
2003	14	0.81
2004	54	1.44

ZnSO₄ banded in furrow at planting

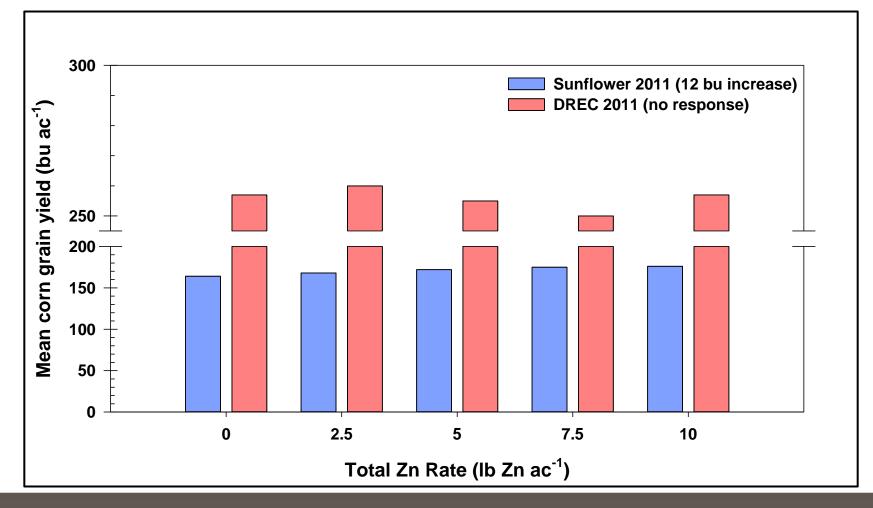
Zn Rate (kg ha⁻¹)

Zinc Research in Corn

Cheneyville, 2011 (Red River alluvial soils)

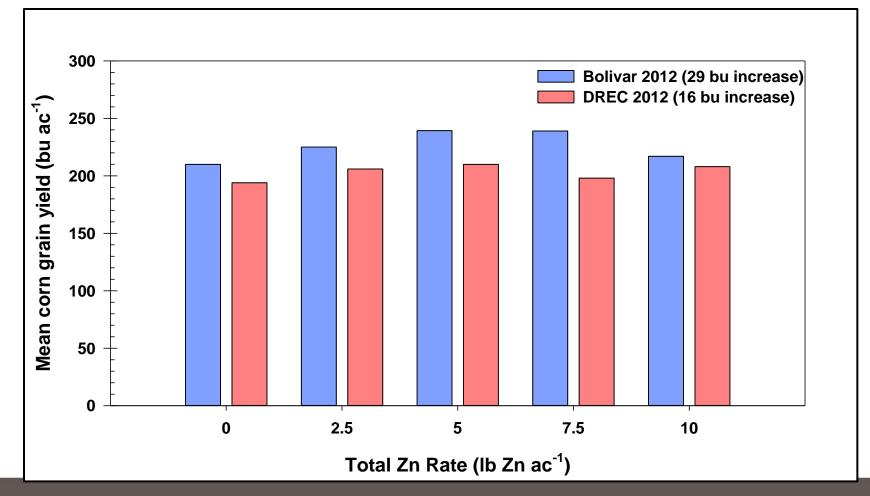
Source	Rate,	Soil Test	V3 leaf	V3 leaf stage V8 leaf stage		Grain Yield,	
	lbs/A	Zn, ppm	Zn, ppm	P/Zn	Zn, ppm	P/Zn	bu/A
ZnSO ₄	0	1.21	22	147	18	116	115
	2.5	1.72	21	152	20	116	142
	5	2.43	21	141	20	115	159
	10	4.00	26	124	18	124	139
ZnEDTA	0	1.28	18	167	19	121	129
	2.5	1.99	20	153	19	113	155
	5	2.39	21	145	18	115	143
	10	2.11	23	129	20	110	139

Soil test P = 50 ppm; pH = 7.5



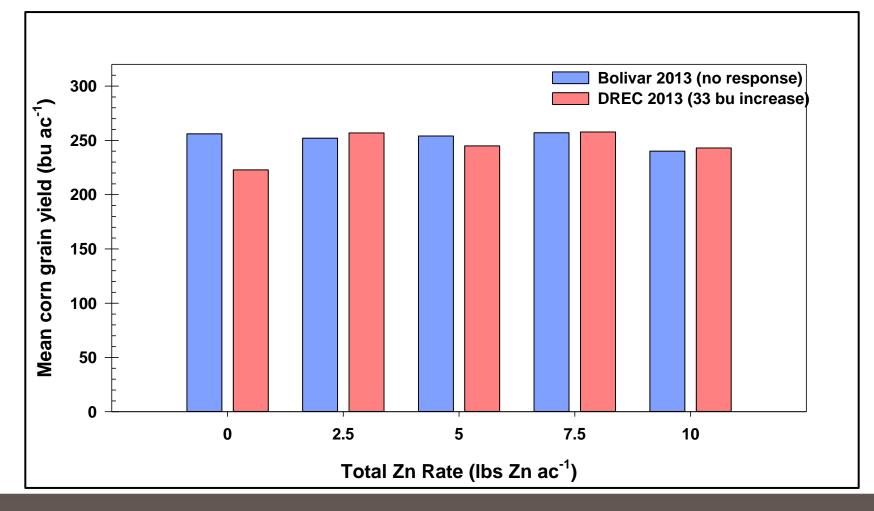
2011 Red River alluvial Zn trial

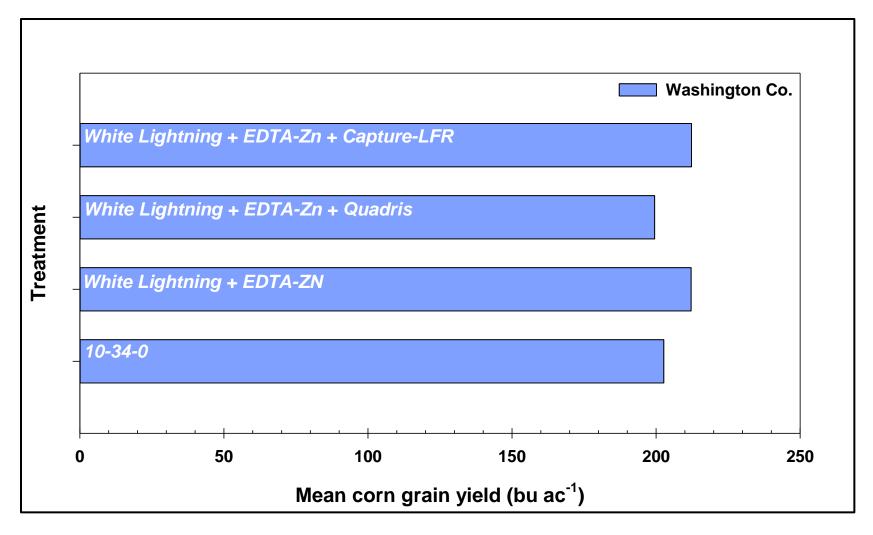
- A Zn application rate of 5 lbs/A was required for soil testing <1.5 ppm Zn.
 - An average of 35 bu/A increase in grain yield was obtained
 - Lower application rate was required if applied as ZnEDTA
- A marginal increase in grain yield was observed when
 2.5 lbs Zn/A (regardless of source) was applied to
 corn grown on soil with Zn < 2.5 ppm.



Corn Response to Zn Rate

MAFES

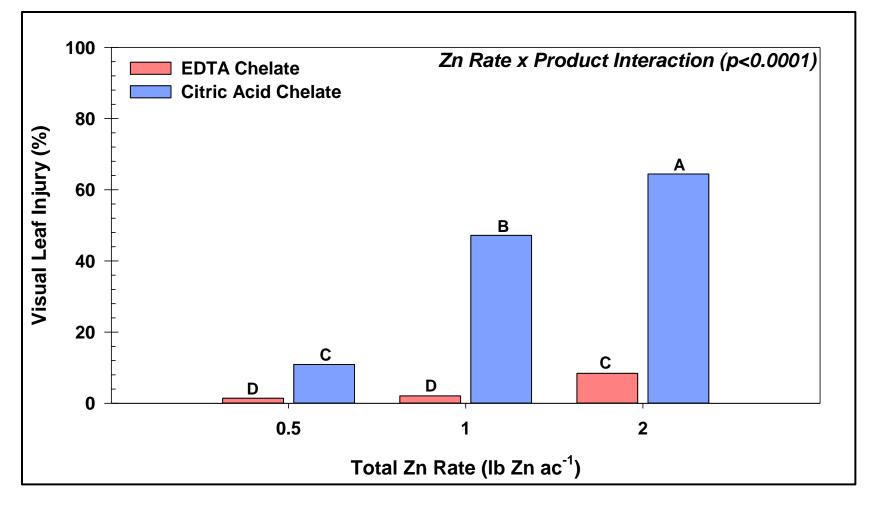

Corn Response to Zn Rate


MAFES

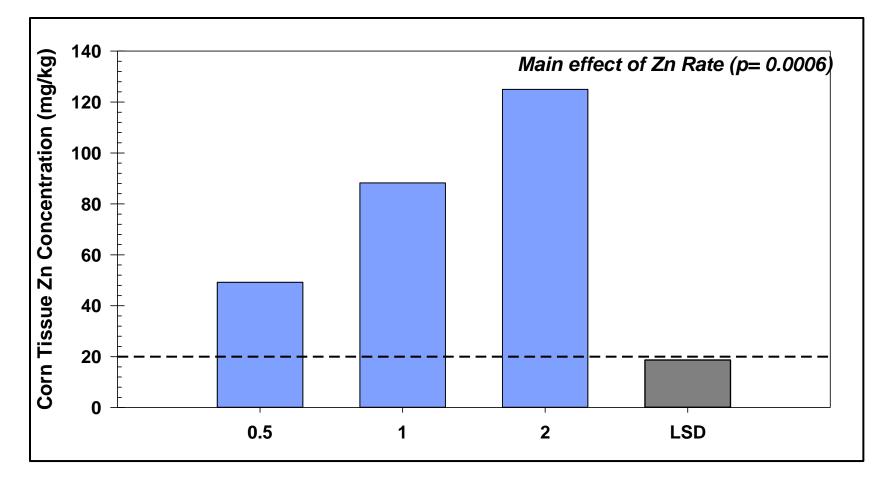
Golden unpublished data (2013)

Corn Response to Zn Rate

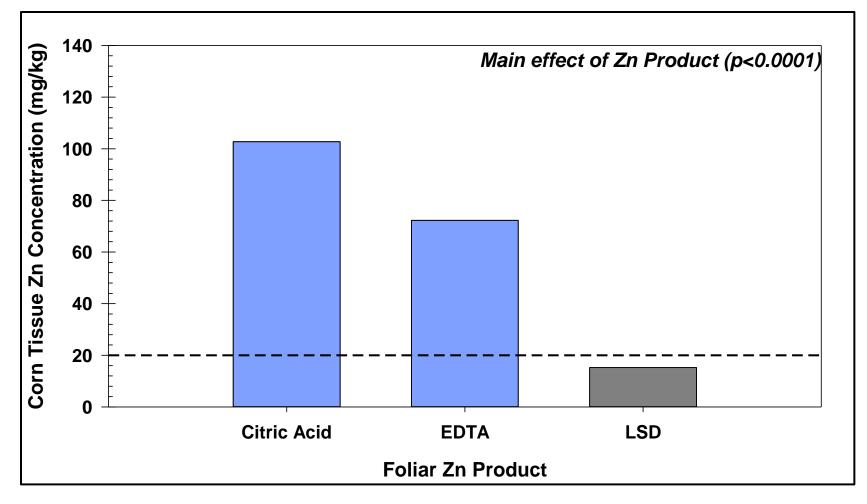
MAFES


Source: Scott; unpublished data (2013)

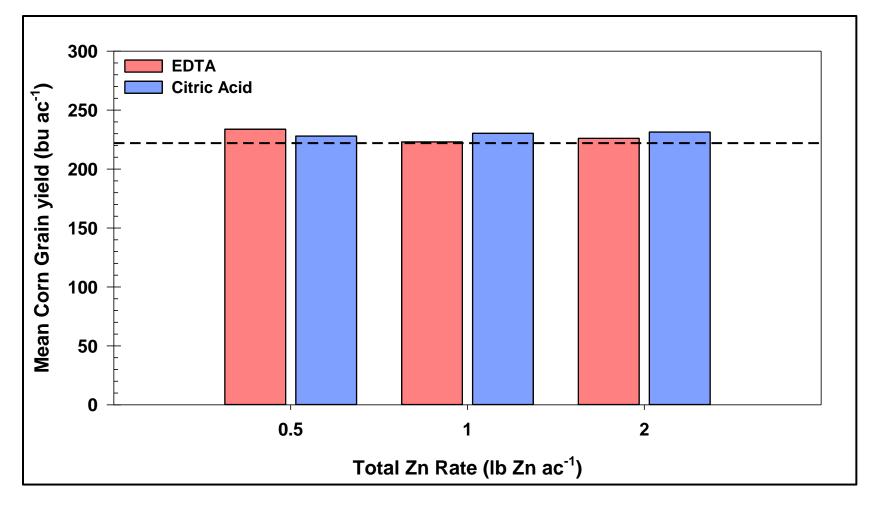
Zn Product Foliar Burn



Zinc Product Foliar Injury at 9d after Application



Zinc Product Tissue Concentration at 2w after Application



Zinc Product Tissue Concentration at 2w after Application

Zinc Product Tissue Concentration at 2w after Application

Zinc Source Foliar Burn

Zinc program basics

- Soil test Zn coupled with pH is a good indicator of need
- Not all Zn fertilizers are created equal
 - Must take into account water solubility
 - Supply Zn early

- Soil test Zn should be above 1.5 ppm
- Broadcast at a rate of 5-10 lbs Zn/acre
- Higher applications may provide enough Zn to remain effective for multiple years
- Zn can be banded or added to APP starter at rate of 0.5 – 1.0 lbs Zn/acre as chelate or 2-4 lbs Zn/acre as sulfate
- 0.5 2.0 lbs Zn/acre as a foliar
- Less residual effect, so repeat annually
- Zn is immobile in soil so subsurface banding is best for no-till

Thank You

©2013 KOCH AGRONOMIC SERVICES, LLC. ALL RIGHTS RESERVED. AGROTAIN® AND SUPERU® ARE TRADEMARKS OF THE MOSAIC COMPANY AND IS LICENSED EXCLUSIVELY TO KOCH AGRONOMIC SERVICES, LLC. AGROTAIN®, AGROTAIN® ULTRA AND AGROTAIN® PLUS NITROGEN STABILIZERS, AND SUPERU® FERTILIZER, ARE MANUFACTURED AND SOLD BY KOCH AGRONOMIC SERVICES, LLC UNDER AN EXCLUSIVE LICENSE FROM THE MOSAIC COMPANY. THE KOCH LOGO IS A TRADEMARK OF KOCH INDUSTRIES, INC. CERTAIN OF THE STUDIES REFERRED TO IN THIS PRESENTATION WERE FUNDED IN WHOLE OR IN PART BY KOCH AGRONOMIC SERVICES, LLC OR ITS PREDECESSORS.

KOCH AGRONOMIC SERVICES, LLC