

A Regional Program for Production of Multiple Agricultural Feedstocks and Processing to Biofuels and Biobased Chemicals

USDA-NIFA AFRI Sustainable Bioenergy Grant Grant Award No. 2011-69005-30515

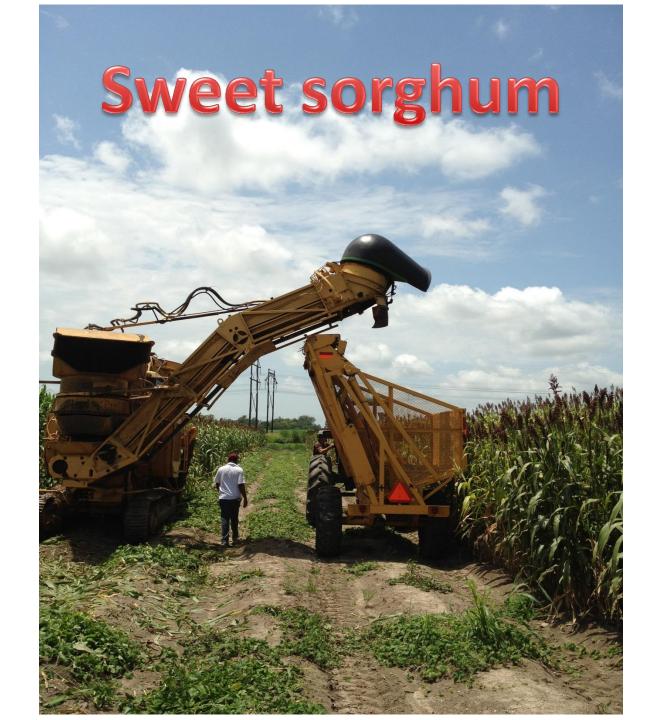
Personnel and Partners

- LSU AgCenter Drs. Aita, Alison, Aragon, Attaway, Baisakh, Blazier, Bollich, Day, Dorman, Ehrenhauser, Gravois, Han, Harrell, Hoy, Kimbeng, Legendre, Lovelady, Russin, Salassi, Tubana, Viator and Vlosky
- USDA-ARS Drs. Grisham, Hale, Johnson, Webber and P. White
- Ceres, Dupont, John Deere, MS Processes International, Optinol, Sugar Cane Growers Coop. of Fla., SynGest, and Virent
- 7 University System

Renewable Fuel Standard Program

- Under the Energy Independence and Security Act (EISA) of 2007, the RFS program increased the volume of renewable fuel required to be blended into transportation fuel from 9 billion gallons in 2008 to 36 billion gallons by 2022.
- For 2014, it is <u>proposed</u> that about 10% of all fuel used would be from renewable sources (only .01% cellulosic biofuel) <u>this proposal for standards is currently delayed</u>.
- EISA required EPA to apply lifecycle greenhouse gas performance threshold standards to ensure that each category of renewable fuel emits fewer greenhouse gases than the petroleum fuel it replaces.

Definition of Biofuels


- Conventional biofuel ethanol derived from corn starch
- Advanced biofuels other than ethanol derived from corn starch and include cellulosic biofuels and biomass-based diesel (50% GHG emissions reduction)
- Cellulosic biofuels derived from any cellulose, hemicellulose or lignin that is derived from renewable biomass (60% GHG emissions reduction)

Year-round Feedstock Production Model

Month	Feedstock Source					
Jan		Energy cane				
Feb		Energy cane				
Mar		Energy cane				
Apr				Bagasse		
May				Bagasse		
Jun				Bagasse		
Jul	Sweet sorghum					
Aug	Sweet sorghum					
Sep	Sweet sorghum	Energy cane				
Oct	Sweet sorghum	Energy cane	Sugar/Syrup			
Nov		Energy cane	Sugar/Syrup			
Dec		Energy cane	Sugar/Syrup			

Defined Tasks

- Feedstock development (yield/cold tolerance)
- Feedstock production (low-input/marginal soil)
- Feedstock logistics and pre-processing
- Feedstock conversion and refining
- Economics of production and processing
- Education
- Extension

Planting hybrids of different maturity (90-days to 150-days) from early April to June allowed for the harvesting from late July through October

Comparison of 90-day hybrid to 120day hybrid

Comparison of 90-day hybrid to 150day hybrid

Harvesting initiated at hard-dough stage

 Across all planting dates and hybrids the average fiber was 23% (4.7 tons dry matter), juice yield of over 10 tons per acre, and total fermentable sugar average was 5100 pounds per acre for sweet sorghum harvested with no extractor fans on

Scheduling required to provide 1000 tons of sweet sorghum biomass to a mill facility on a daily basis

Planting	Maturity	Fresh wt.	Acres	Harvest period
date	group	tons/acre	planted	
April	Early	18.6	753	July 15 – Aug. 1
	Medium	31.5	444	Aug. 1 – Aug. 15
May	Medium	42.9	326	Aug. 15 – Aug. 31
	Late	38.9	360	Sept. 1 – Sept. 15
June	Medium Late	32.1 30.0	436 <u>467</u> 3000 acres	Sep. 15 – Sept. 30 Oct. 1 – Oct. 15

Energy cane

(ii) m

Photo courtesy of Rich Johnson

.....

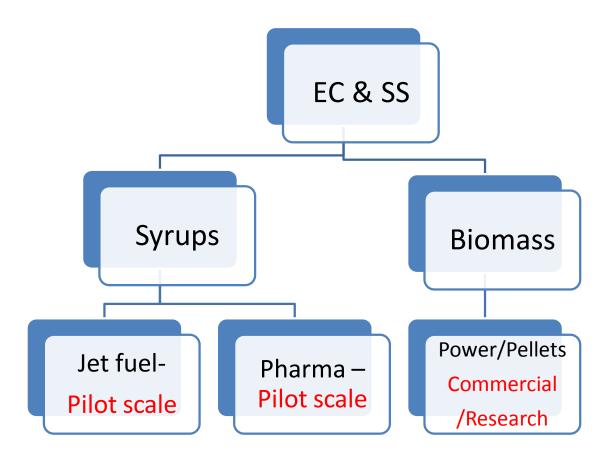
Energy cane Objectives

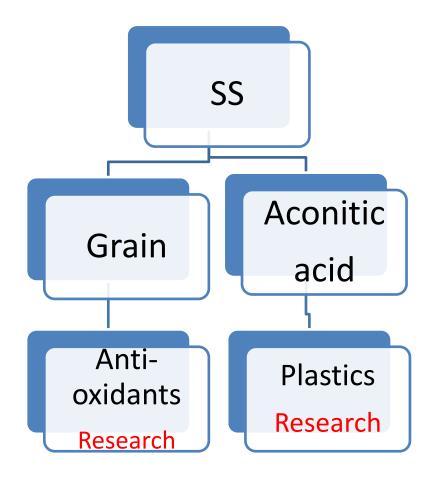
Extend geographic range of production by breeding for cold tolerance and investigation of cultural practices that impact survivability

- Dates of harvest effects
- Fertilizer protocols
- Depth of cover
- Cellulose content

Test for Minimum Cellulose Content

Fiber/ Fiber + Brix > 75% Energy cane experiments averaged over 75%

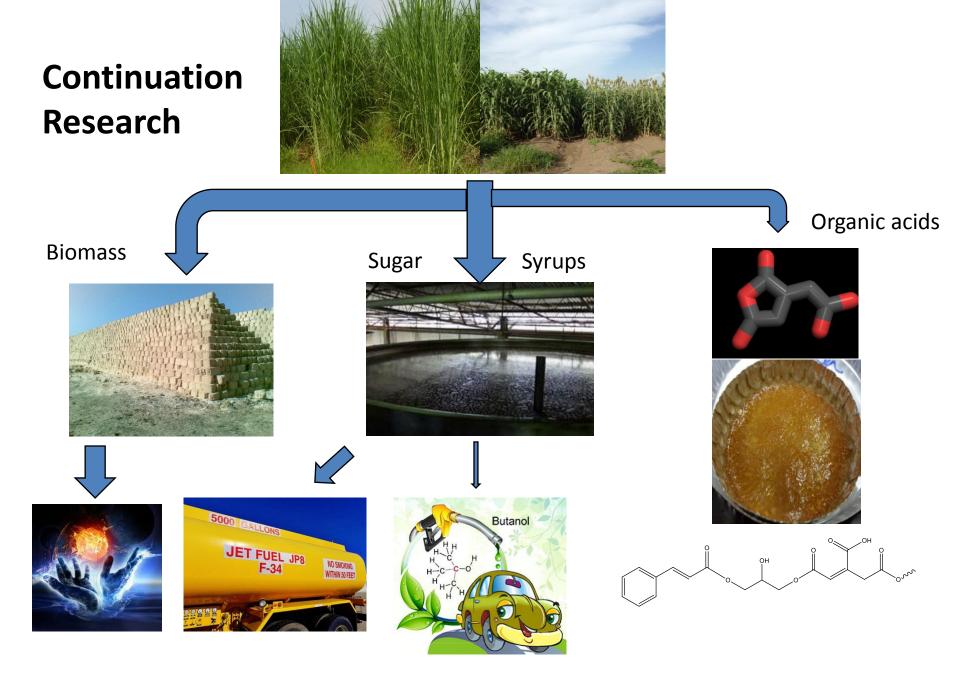

Energy cane Summary

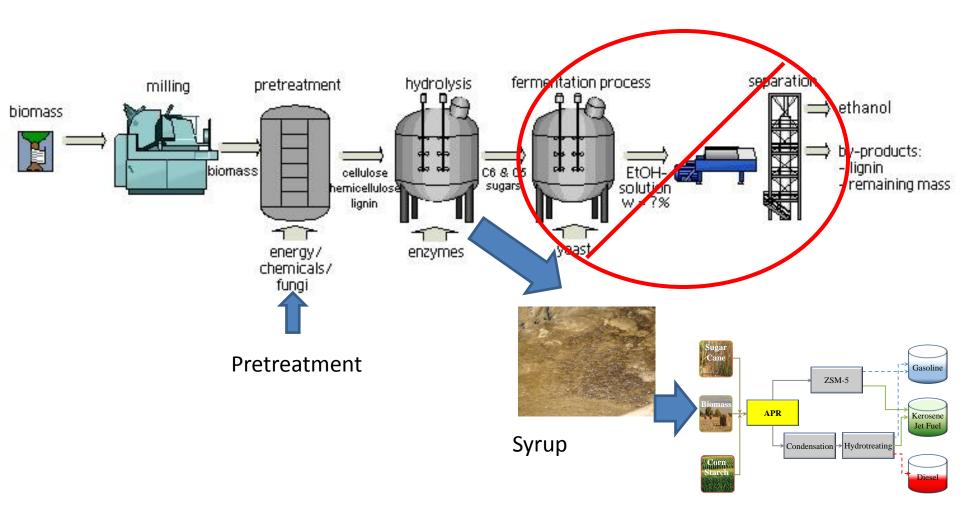

- Dry matter yields of 9 tons/acre achievable with minimal inputs on marginal land and 15 to 17 tons of juice per acre (higher DM and juice yields were measured elsewhere)
- 7 out of 12 months deliverable feedstock
- Most energy canes tested pass EPA cellulose limits
- Cold tolerance genetic markers identified and hundreds of cross made to provide genotypes to select for cold tolerance

Cost of Production

• Each dry ton of energy cane cost from \$95 to \$110 to produce.

Consensus opinion is that yield must increase for profitability.




Twitter – AgCenter SUBI@AgCenterSUBI

Facebook – facebook.com/AgCenterSUBI

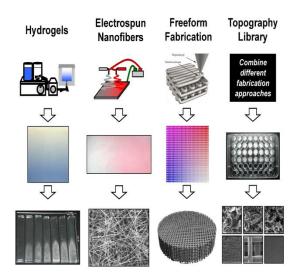
www.lsuagcenter.com/en/crop_livestock/crops/Bioenergy/ biofuels_bioprocessing/subi/

Idealized Process

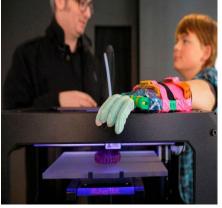
Estimated Energy Cane Total Production Costs

Energy Cane	Ho 02-	Ho 02-	Ho 06-	Ho 06-	HoCP
Variety	144	147	9001	9002	72-114
			(\$/ton)		
Variable cost per wet ton	16	11	17	19	14
Fixed cost/rent per wet ton	10	7	10	11	8
Total grower cost per wet ton	26	18	27	30	22
Variable cost per dry ton	70	61	61	70	62
Fixed cost/rent per dry ton	42	36	37	41	37
Total grower cost per dry ton	112	97	98	111	99

Variable costs estimated using 2014 values. Fixed equipment costs = \$143/acre, land rent = 16.7% of breakeven price x yield. Dry ton costs estimated using an average fiber content of each variety.

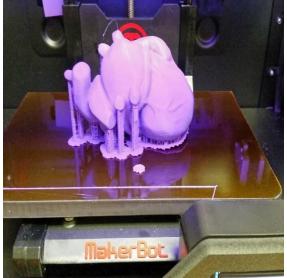

Crop cycle through harvest of 4th stubble.

Total grower cost represents an estimate of breakeven price per ton.



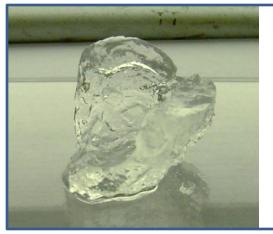
3D Printing provides new applications.

- Tissue Scaffolding
- Replacement organs
- Rapid Prototyping

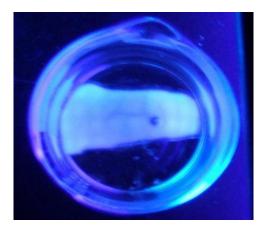

NIST: http://www.nist.gov/mml/bbd/biomaterials

Henn, S. and Carpien, C. 3-D Printer Brings Dexterity To Children With No Fingers. NPR.org, Jun 18, 2013.

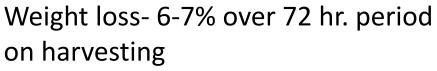
Windpipe implant for baby. USA Today: http://www.usatoday.com/story/news/nation/2013/05/22/3dprinter-implant-baby/2348091/


Skull implant for 22-year-old woman. http://www.umcutrecht.nl/researc h/news/2014/03/3d-printed-skullimplanted-in-patient.htm

Our current bioplastic formulations.

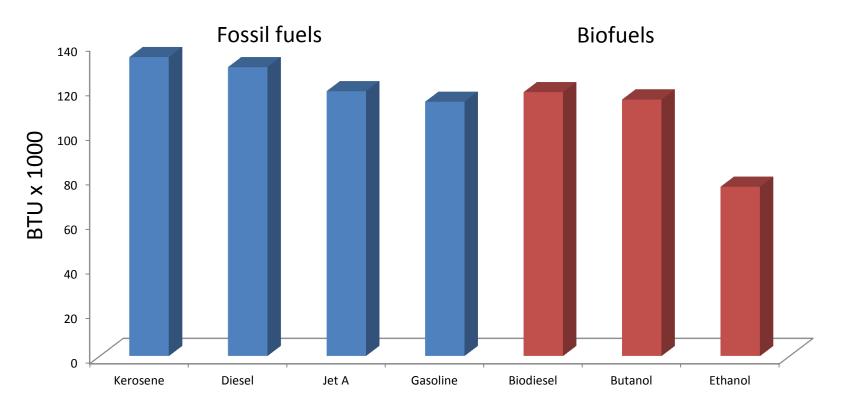

Properties	Monomers	Additives /	Picture	
	Used	Notes		
Hard, Brittle, Translucent	Citric Acid, Cinnamic Acid, Glycerol			
Hard, Brittle, Translucent, Fluorescent	Citric Acid, Cinnamic Acid, Glycerol	Fluorescein		
Hard, Tough, Opaque	Citric Acid, Cinnamic Acid, Glycerol	Plaster		
Rubbery, Tough, Translucent	Citric Acid, Sebacic Acid, Glycerol	Substitute 1% sebacic acid for some of the citric acid	Contraction of the second	

BIO-PLASTICS MATRICES FROM ACONITIC ACID


Biodegradable and photolithotrophic plastics from Energy crops

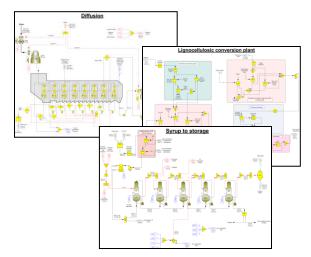
Harvesting

Sweet Sorghum


3 trials, one acre lots (about 18 rows) 8 inch billets, 3 different fan speeds evaluated

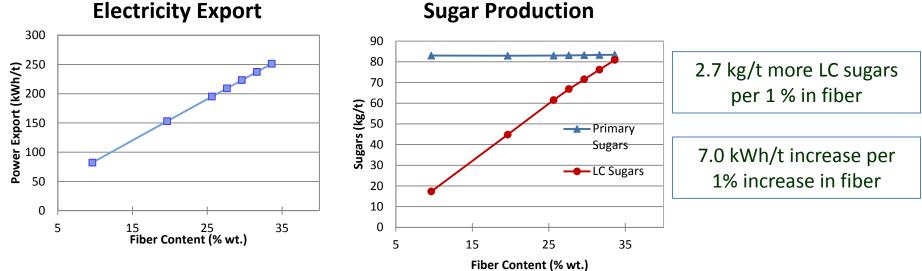
Energy cane

7-9% weight loss over a 72 hr.period. Same design.Harvesting in October


Butanol as a Fuel Energy Equivalents- Liquid Fuels

A transportation fuel requires high energy density per unit weight

Co-generation


- Model developed in SUGARS[™]
 - Extraction by diffusion
 - Diluted acid pretreatment for lignocellulosic conversion

Annual production of fermentable sugars, excess bagasse, electric power and syrup

		Scenario 1 Excess bagasse used for electric power generation			Scenario 2 Excess bagasse used for lignocellulosic sugars production				
	Feedstock	Primary sugars, million kg	Excess bagasse, million t	Power export, million kWh	Syrup, K-m3	Primary sugars, million kg	Excess bagasse, million t	Lignocellulosic sugars, million kg	Syrup, K-m3
E	nergy cane	99.8	600.8	268	50.5	99.8	330.2	85.8	94.1
- 1	Sweet Sorghum	49.6	164.2	119.9	24.9	49.6	147.4	38.9	44.5
F	acility total	149.4	765.0	387.9	75.4	149.4	477.6	124.7	138.6

An integrated biorefinery approach based on energy cane and sweet sorghum is feasible in terms of fiber availability

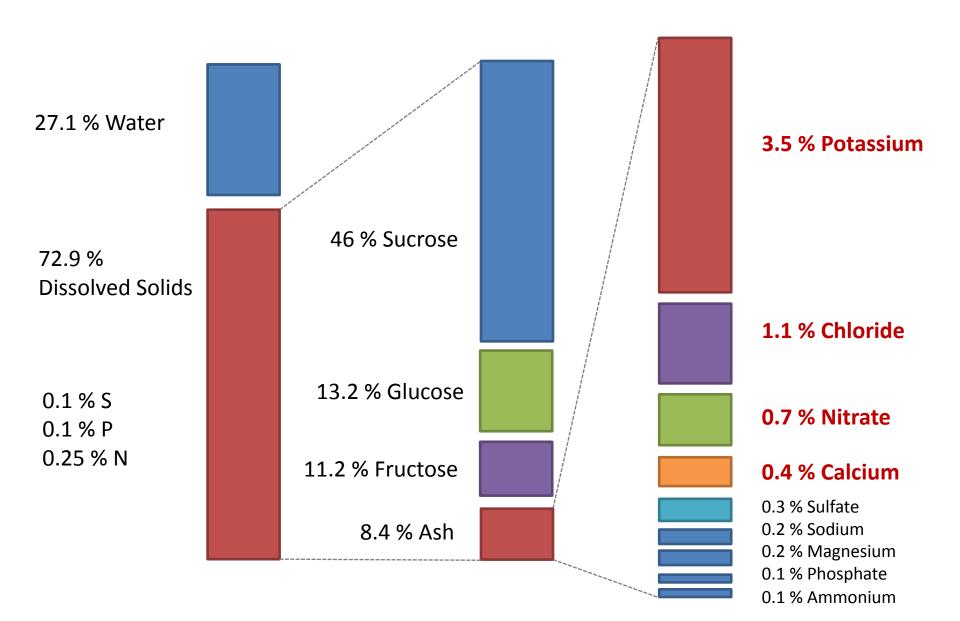
Sugar Production

- Simulations
 - Minimum 5% in fiber content to export generation 45.1 kWh/t
 - Minimum 3% in fiber content to produce 2.3% LC sugars/t

Enzymatic sugar production

Start

3 hours



6 hours

40 hrs

sugar yield - 70-90% of cellulose in biomass converted to fermentable sugars

Composition Sorghum Syrup

Power Requirements- Milling (Crop Dependent)

Sweet sorghum and energycane fall at different ends for fiber.

Eiland and Clarke, 2008 ASSCT, Panama City, Florida

Milling

Sweet Sorghum

Three runs of 5 ton lots. For two runs the whole plant was harvested, for one the seed heads and leaves were removed.

Feed rate low. It was not possible to mill the clean billets because of choking (not enough fiber).

Energy Cane

- Feed rate dependent on variety.
- Leaf removal necessary to improve efficiency.
- Increased power requirement due to high fiber content.

