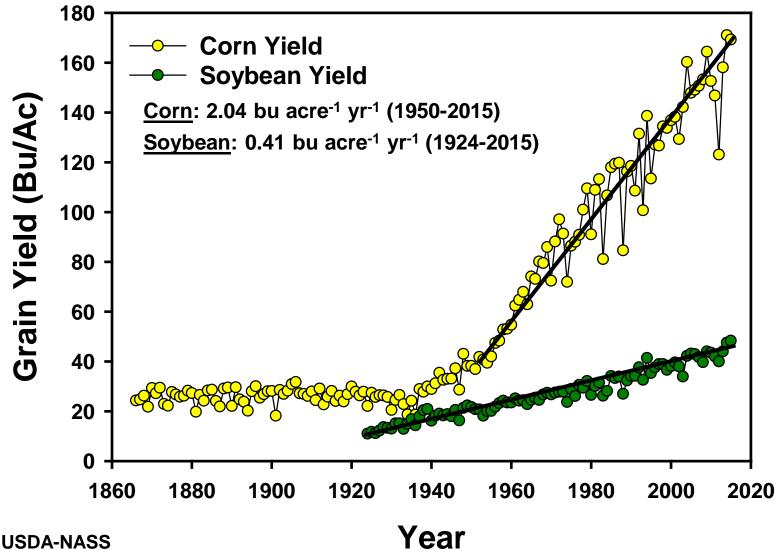
Enhanced Management for Increased Soybean Yield

Ross Bender, PhD Senior Agronomist The Mosaic Company

Louisiana Agricultural Technology and Management Conference; Marksville, LA

Closing the Yield Gap					
	Yield:* Yield:** Yield:				
Crop	Record	US Avg	'Gap'		
	—————Yield (Bu Ac ⁻¹) ————				
Corn	532	168	364		
Soybean	161	48	113		
Wheat	246	43	203		


*Kip Cullers (MO, USA), David Hula (VA, USA), Tim Lamyman (UK). **USDA-NASS, 2015.

SOYBEAN PRODUCTION FOR HAY AND BEANS

Corn and Soybean Yield Progress

Source: USDA-NASS

Crucial Prerequisites, but not Secrets of Success

•Drainage

•Weed Control

•Proper Soil pH

The Six Secrets of Soybean Success

Rank	Factor
1	Weather
2	
3	
4	
5	
6	
Given key prerequisites	

The Six Secrets of Soybean Success

Rank	Factor
1	Weather
2	Fertility
3	
4	
5	
6	
Given key prerequisites	

Perception of Soybean Fertilization

<u>Past</u>: "from the standpoint of removal ... soybeans are 'hard on the land' ... and would be classed as a crop that rapidly depletes soil bases" including K, Ca, and Mg

Hammond et al., 1951

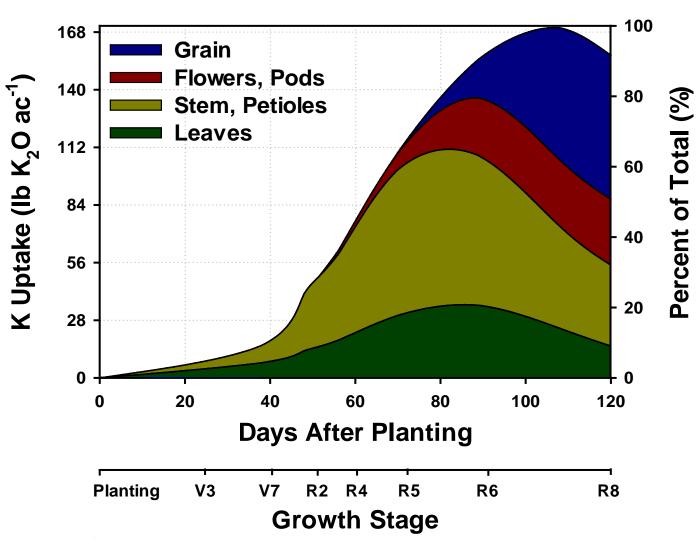
<u>Current</u>: Often grown in rotation with corn; scavenge residual fertilizer or mine existing soil reserves

Nutrient Uptake & Removal: 60 Bushel Soybean

Nutrient	Required to Produce	Removed with Grain	Harvest Index
		acre ⁻¹	%
Ν	245	179	73
P_2O_5	43	35	81
K ₂ O	170	70	46
S	17	10	61
Zn (oz)	4.8	2.0	44
B (oz)	4.6	1.6	34

Bender et al., 2015. Agronomy Journal (107:563-573)

P and K Uptake & Removal: Soybean vs Corn


Nutrient	Requito Pro	ired duce	Remo with G		Rema Stov	
	Corn	Soy	Corn	Soy	Corn	Soy
			lb a	acre ⁻¹		
P ₂ O ₅	101	43	80	35	21	8
K ₂ O	180	170	56	70	124	100

Soybean: Bender et al., 2015. Agronomy Journal (107:563-573) Corn: Bender et al., 2013. Agronomy Journal (105:161-170)

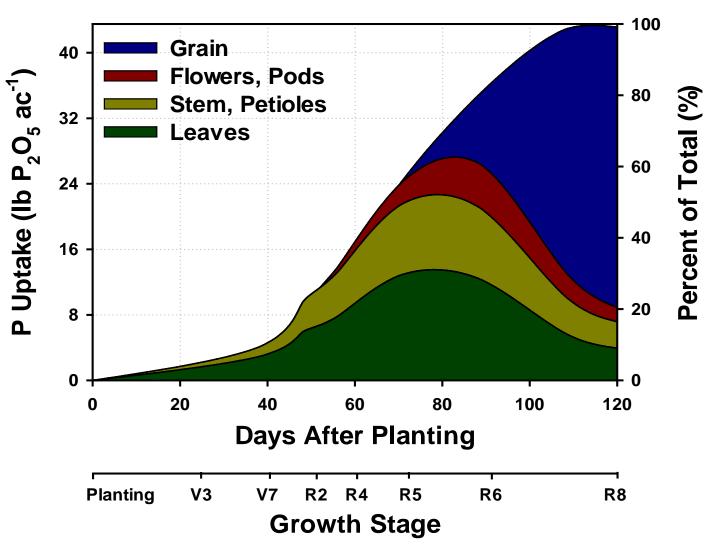
Potassium Uptake in Soybean: 60 Bu/Ac

Key Points:

- K is critical for enzymes, water relations, etc.
- Max uptake rate of 3.5 lbs K₂O/ Ac/Day (50 days)
- Stems serve as important reservoirs for extra K
- Non-grain K returned to soil

Bender et al., 2015. Agronomy Journal (107:563-573)

P and K Uptake & Removal: Soybean vs Corn


Nutrient	Requ to Pro	ired duce	Remo with G		Rema Stov	
	Corn	Soy	Corn	Soy	Corn	Soy
			lb a	acre ⁻¹		
P ₂ O ₅	101	43	80	35	21	8
K ₂ O	180	170	56	70	124	100

Soybean: Bender et al., 2015. Agronomy Journal (107:563-573) Corn: Bender et al., 2013. Agronomy Journal (105:161-170)

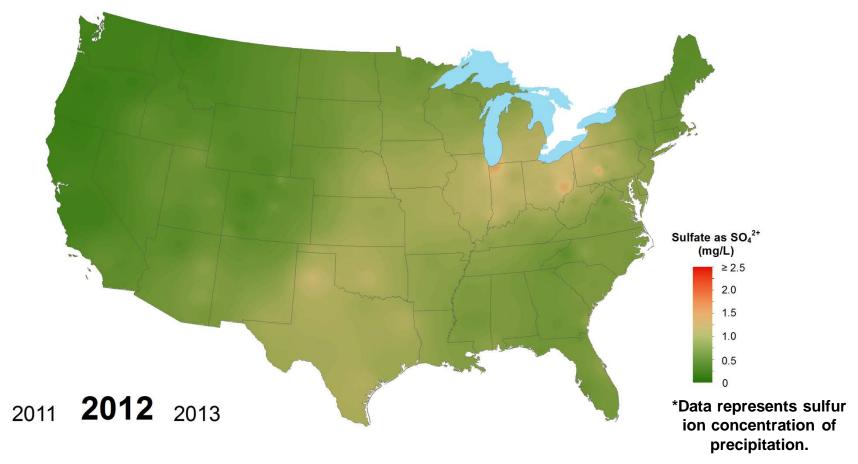
Phosphorus Uptake in Soybean: 60 Bu/Ac

Key Points:

- 45% of P uptake during seed-fill
- Rapid uptake for 70 days straight
- •80% partitioned to grain, removed
- Large demand for P during seed-fill means soybean needs P each year, not biennially

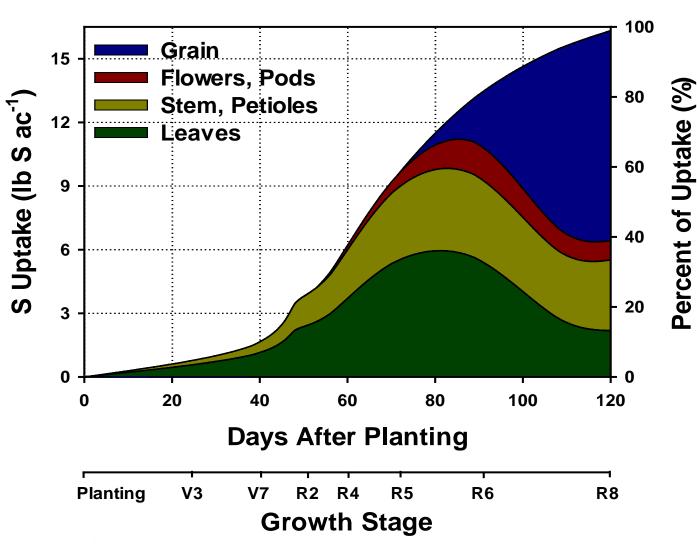
Bender et al., 2015. Agronomy Journal (107:563-573)

Nutrient Uptake & Removal: 60 Bushel Soybean


Nutrient	Required to Produce	Removed with Grain	Harvest Index
	lb a	acre ⁻¹	%
Ν	245	179	73
P_2O_5	43	35	81
K ₂ O	170	70	46
S	17	10	61
Zn (oz)	4.8	2.0	44
B (oz)	4.6	1.6	34

Bender et al., 2015. Agronomy Journal (107:563-573)

Reduced Atmospheric Deposition of S



Data courtesy of National Atmospheric Deposition Program/National Trends Network (http://nadp.isws.illinois.edu)

Sulfur Uptake in Soybean: 60 Bu/Ac

Key Points:

 Season-long uptake of S

 Sulfate S: early season needs;
Elemental S: late season needs

 Needed in the grain for amino acid development

Bender et al., 2015. Agronomy Journal (107:563-573)

Soybean Plants Respond to Fertility

Champaign, IL 2014 ₁₇

The Six Secrets of Soybean Success

Rank	Factor
1	Weather
2	Fertility
3	Genetics/Variety
4	
5	
6	

Given key prerequisites

Does Variety Selection Matter?

Variety	Yield	Variety	Yield	Variety	Yield
	bu acre ⁻¹		bu acre-1		bu acre ⁻¹
1	69.5	7	78.4	13	84.8
2	72.7	8	80.1	14	85.5
3	73.6	9	82.3	15	87.1
4	74.9	10	83.1	16	87.5
5	76.5	11	83.3	17	89.0
6	78.4	12	84.1		

17 varieties with high-input management at Champaign, IL 2015.

Does Variety Selection Matter?

MG	Yield	MG	Yield	MG	Yield
	bu acre ⁻¹		bu acre ⁻¹		bu acre-1
3.0	69.5	2.9	78.4	3.9	84.8
2.5	72.7	3.7	80.1	3.8	85.5
2.5	73.6	3.6	82.3	3.8	87.1
2.9	74.9	3.7	83.1	3.3	87.5
2.6	76.5	3.1	83.3	3.5	89.0
2.8	78.4	3.1	84.1		

17 varieties with high-input management at Champaign, IL 2015.

The Six Secrets of Soybean Success

Rank	Factor
1	Weather
2	Fertility
3	Genetics/Variety
4	Foliar Protection
5	
6	

Given key prerequisites

Soybean Yield Components

Yield = Pod number/acre x

Seeds per pod x Weight per seed

The Legendary 5-Bean Pod

Soybean Yield Components

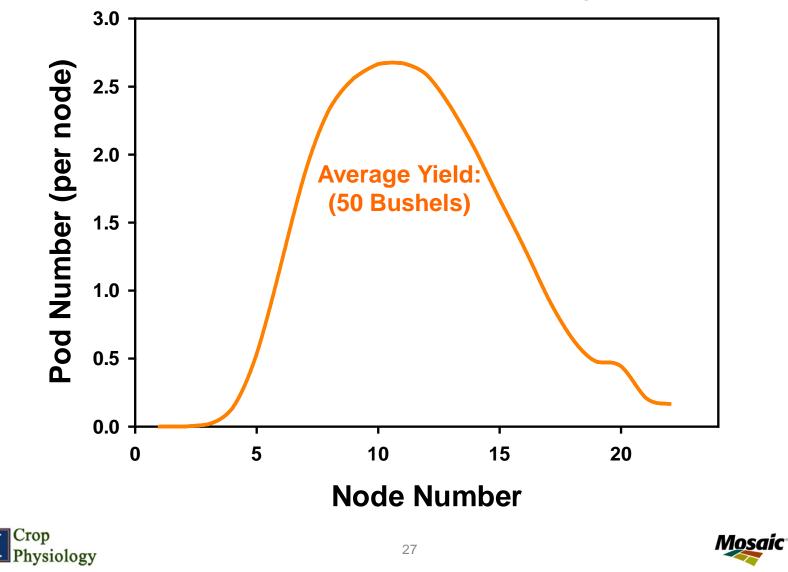
Yield = Pod number/acre x

Seeds per pod x Weight per seed

The Six Secrets of Soybean Success

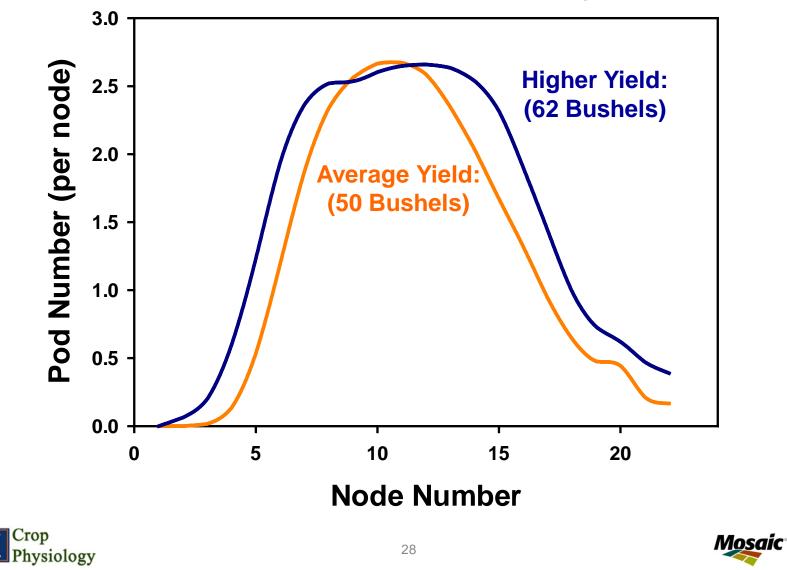
Rank	Factor
1	Weather
2	Fertility
3	Genetics/Variety
4	Foliar Protection
5	
6	

Given key prerequisites


Soybean Yield Components

Yield = Pod number/acre x

Seeds per pod x Weight per seed



How Does Pod Number Effect Soybean Yield?

Average of two varieties at two Illinois locations during 2012 and 2013.

How Does Pod Number Effect Soybean Yield?

Average of two varieties at two Illinois locations during 2012 and 2013.

The Six Secrets of Soybean Success

Rank	Factor		
1	Weather		
2	Fertility		
3	Genetics/Variety		
4	Foliar Protection		
5	Seed Treatment		
6			

Given key prerequisites

Impact of Seed Treatment on Emergence

Untreated

Fungicide, Insecticide, **Nematicide** Mosaic

Impact of Seed Treatment on Soybean Growth

The Six Secrets of Soybean Success

Factor			
Weather			
Fertility			
Genetics/Variety			
Foliar Protection			
Seed Treatment			
Row Arrangement			

Given key prerequisites

Row Spacing Impacts Light Interception, Air Canopy Movement

30" Rows

Soybean Management Trials

2015 Research Trials:

- 6-7 plots at 3 locations
 - Reference: (Marksville, LA: 31°N)
- Banded phosphate (Mosaic's MicroEssentials SZ) or broadcast potassium (Mosaic's Aspire), or both
- Different company seed (Monsanto, Syngenta, Winfield) and foliar protection products (BASF or Syngenta)
 - Normal <u>and</u> full maturity variety
- All in 30 inch vs 20 inch rows, at a seeding rate of 160,000 plants/acre

Narrow Row Spacing Increases Yield

Location	30"	20"	Δ
		—_bu Ac ⁻¹ —	
DeKalb	61.7	69.6	+7.9*
Champaign	84.7	93.2	+8.5*
Harrisburg	77.5	80.0	+2.5
Average	74.6	80.9	+6.3*

* Significantly different at $P \le 0.01$. Average of 7 Trials at 3 locations during 2015.

Standard vs High Tech System - 2015

Phosphorus

Potassium

P and K

Foliar Protection

Seed Treatment

Row Arrangement

P applied year before to corn 75 lbs P₂O₅ as MESZ (N, P, S, & Zn) Banded 4-6" under row at planting

K applied year before to corn 75 lbs K₂O as Aspire (K & B) Broadcast and incorporated at planting

P & K applied year before to corn MESZ and Aspire applied as above

No foliar protection Fungicide and Insecticide at R3

Untreated or Fungicide only Fungicide, Insecticide, Nematicide

30 inch row spacing20 inch row spacing

Narrow Rows Magnify Value of Management

Row Space	Standard	High Tech	Increase from Management
inches -		-bu Ac ⁻¹ —	
30	70.7	77.8	+7.1*
20	74.3	85.4	+11.1*
Increase from 20 inch rows	+3.6*	+7.6*	

* Significantly different at $P \le 0.01$. Average of 7 Trials at 3 locations during 2015.

Standard vs High Tech System - 2015

Phosphorus

Potassium

P and K

Foliar Protection

Seed Treatment

Row Arrangement

P applied year before to corn 75 lbs P₂O₅ as MESZ (N, P, S, & Zn) Banded 4-6" under row at planting

K applied year before to corn 75 lbs K₂O as Aspire (K & B) Broadcast and incorporated at planting

P & K applied year before to corn MESZ and Aspire applied as above

No foliar protection Fungicide and Insecticide at R3

Untreated or Fungicide only Fungicide, Insecticide, Nematicide

30 inch row spacing20 inch row spacing

Soybean Omission Plot Design

MANAGEMENT FACTORS

	Treatment	Phosphate	Potassium	P & K	Foliar Protec	Seed treatment
	HIGH TECH	Yes	Yes	Yes	Yes	Full
	-Phosphate	None	Yes	Yes	Yes	Full
ise ogy	-Potassium	Yes	None	Yes	Yes	Full
Decrease Technology	-P and K	Yes	Yes	None	Yes	Full
De Tec	-Foliar Protection	Yes	Yes	Yes	None	Full
	-Seed Treatment	Yes	Yes	Yes	Yes	Basic
	TRADITIONAL	None	None	None	None	Basic
2	+Phosphate	Yes	None	None	None	Basic
olo	+Potassium	None	Yes	None	None	Basic
schn	+P and K	None	None	Yes	None	Basic
Add Technology	+Foliar Protection	None	None	None	Yes	Basic
۲ ۲	+Seed Treatment	None	None	None	None	Full

Treatments evaluated in 30 and 20 inch row spacing across two varieties.

Yield Increases with Standard Management

Factor	Yield	Δ
	bu	I Ac ⁻¹ ———
Standard	70.7	
+P (MESZ, with S & Zn)	76.5	+5.8*
+K (Aspire, with B)	70.1	-0.6
+P & K (MESZ + Aspire)	74.2	+3.5*
+Foliar (Fung + Insect)	73.8	+3.1*
+Seed Trt (Fung+Insec+Nem)	72.3	+1.6

* Significantly different at $P \le 0.01$. Average of 7 Trials at 3 locations during 2015. Responses shown in 30" rows.

Yield Increases with High Tech Management

Factor	Yield	Δ
	bu	Ac-1
High Tech	85.4	
-P (MESZ, with S & Zn)	80.5	-4.9*
-K (Aspire, with B)	87.0	+1.6
-P & K (MESZ + Aspire)	80.6	-4.8*
-Foliar (Fung + Insect)	82.9	-2.5
-Seed Trt (Fung+Insec+Nem)	82.6	-2.8*

* Significantly different at $P \le 0.01$. Average of 7 Trials at 3 locations during 2015. Responses shown in 20" rows.

Overall Effect of Management in 2015

	Standard		High	Tech
Factor	Yield	Δ	Yield	Δ
		bu A	Ac ⁻¹ ———	
High Tech	70.7		85.4	
-P	76.5	+5.8*	80.5	-4.9*
-K	70.1	-0.6	87.0	+1.6
-P & K	74.2	+3.5*	80.6	-4.8*
-Foliar	73.8	+3.1*	82.9	-2.5
-Seed Trt	72.3	+1.6	82.6	-2.8*

* Significantly different at $P \le 0.01$. Average of 7 Trials at 3 locations during 2015.

Agronomic Management of Soybean - Conclusions

- For maximum soybean yield, a system's approach is needed which combines genetic, agronomic, and plant nutrition factors with known impacts on soybean productivity.
- Nutrients with high requirements for production, high harvest index values, or unique uptake patterns such as N, P, K, S, Zn, and B are critical for high yields.
- Not all nutrients are accumulated at the same time or used in the same way.

Agronomic Management of Soybean - Conclusions

- Agronomic management interacts with row spacing, with a greater response to crop nutrition in narrow row environments.
- Large opportunities exist to increase soybean productivity and require a high yielding variety, positioned for maximum light interception, protected from stress, and fed with the right balance of crop nutrients.

Sincere Thank You to:

- Harold Lambert, Denise Wright
 - LATMC Participants
- Fred Below and Graduate Students
 - University of Illinois Crop Physiology Lab

For more information, please visit:

Crop Nutrition: Mesaic Crop Nutrition.com

University of Illinois Crop Physiology Laboratory: http://cropphysiology.cropsci.illinois.edu

