## Validation Model to Predict Soybean Yield Loss Associated with Dicamba Exposure

### Jim Griffin and Matt Foster







# Objectives

- To quantify the severity of injury for fourteen injury criteria as influenced by dicamba rate and soybean growth stage.
- To determine relationship between severity of injury for each criterion and yield and to develop a model to predict yield loss.
- To validate the model and develop a software package/APP for use in yield loss prediction.



### Value of Yield Prediction Models?

- Any knowledge that a grower would have related to off-target movement of dicamba on crop yield in real time could be helpful in decisions regarding replanting, additional crop inputs, crop insurance claims, and liability issues.
- Tissue sampling does not appear to be the answer other than possibly verifying that plants were exposed
- Symptomology observed with plants exposed to dicamba is a "tell-tale" sign and auxin herbicides will always "tell on you"!





### Value of Yield Prediction Models?

- Currently the only method of predicting soybean yield loss associated with dicamba exposure is through one's "gut feeling" or a "SWAG".
- I am aware of several instances where the grower was told that the crop was lost following exposure to dicamba and the crop recovered with minimal yield loss.
- Matt's research has shown that soybeans exposed at the vegetative stage to low rates of dicamba can compensate by increased branching; exposure after flowering does not allow enough growing season for plants to recover.

### Variables Included in Models to Predict Soybean Yield Loss in Order of Selection

| V3/V4 exposure        |                       | R1/R2 exposure         |                        |
|-----------------------|-----------------------|------------------------|------------------------|
| 7 DAA                 | 15 DAA                | 7 DAA                  | 15 DAA                 |
| overall visual height | lower stem lesions/   | overall visual height  | lower stem lesions/    |
| reduction (%)         | cracking (0-5)        | reduction (%)          | cracking (0-5)         |
| lower leaf soil       | overall visual height | lower stem             | terminal leaf          |
| contact (0-5)         | reduction (%)         | lesions/cracking (0-5) | chlorosis (0-5)        |
| lower stem lesions/   | terminal leaf         | leaf petiole droop     | leaf petiole base      |
| cracking (0-5)        | epinasty (0-5)        | (0-5)                  | swelling(0-5)          |
| canopy height         | leaf petiole droop    | upper canopy leaf      | stem epinasty          |
| (inches)              | (0-5)                 | inversion (0-5)        | (0-5)                  |
| overall visual injury | leaf petiole base     | leaf petiole base      | terminal leaf necrosis |
| (%)                   | swelling (0-5)        | swelling (0-5)         | (0-5)                  |
| upper canopy leaf     | stem epinasty         | stem epinasty          | terminal leaf cupping  |
| surf. crinkling (0-5) | (0-5)                 | (0-5)                  | (0-5)                  |

### Validation of Models

- Experiments conducted in Baton Rouge and St. Joseph, LA in 2016 using 'Asgrow 4835', an indeterminate MG 4.8 cultivar
- Dicamba formulation, rates, and application timings same as used to develop the models
  - Clarity (diglycolamine salt) at 1/64 to 8 oz/A (1/1024x to 1/2x) plus 0.25%v/v NIS
  - V3/V4 (third/fourth node with 2/3 fully expanded trifoliates) and R1/R2 (open flower at any node on main stem/open flower at one of the two uppermost nodes on main stem)





### Validation of Models (Continued)

- Data were collected for the six variables specified by the model for each application timing and DAA.
- Plots harvested to determine yield; nontreated yields of 67 Bu/A at Baton Rouge and 82 Bu/A at St. Joseph.
  - Percent yield reduction vs. nontreated was calculated for each dicamba rate.
- Using the models (equations), yield for each dicamba rate was <u>predicted</u> and percent yield reduction vs. nontreated was calculated.
- To test the models, <u>predicted</u> percent yield reduction for each dicamba rate was compared to <u>actual</u> percent yield reduction.





### Validation Study Results Averaged Across Locations 15 DAA for V3/V4 Application

|                 |                                                             |                                    | Difference between                      |
|-----------------|-------------------------------------------------------------|------------------------------------|-----------------------------------------|
| Dicamba rate    | Average <mark>actual</mark> yield<br>(Bu/A) / percent yield | Average predicted<br>percent yield | predicted and actual<br>yield reduction |
| (oz/A)          | reduction                                                   | reduction                          | (percentage points)                     |
| 0               | 74.3                                                        |                                    |                                         |
| 1/64 (1/1024 x) | 66.1/11%                                                    | 12%                                | +1 ך                                    |
| 1/32 (1/512 x)  | 63.1/15%                                                    | 17%                                | +2                                      |
| 1/16 (1/256 x)  | 59.7/20%                                                    | 20%                                | 0 Avg = +1.8                            |
| 1/8 (1/128 x)   | 56.5/24%                                                    | 22%                                | -2                                      |
| 0.25 (1/64 x)   | 52.8/29%                                                    | 37%                                | +8                                      |
| 0.5 (1/32 x)    | 50.4/32%                                                    | 52%                                | +20                                     |
| 1 (1/16 x)      | 41.7/44%                                                    | 72%                                | Avg = +28                               |
| 2 (1/8 x)       | 18.9/75%                                                    | 89%                                | +21 +14                                 |
| 4 (1/4 x)       | 7.6/90%                                                     | 99%                                | +9                                      |
| 8 (1/2 x)       | 0/100%                                                      | 99%                                | -1                                      |

<u>Prediction Equation</u>: Y = Intercept value – 4.08 (lower stem lesions/cracking) – 0.46 (percent height reduction) + 5.38 (terminal leaf epinasty) – 5.92 (leaf petiole droop) + 4.21 (leaf petiole base swelling) – 3.77 (stem epinasty).

### Validation Study Results Averaged Across Locations 15 DAA for R1/R2 Application

|                 |                          |                   | Difference between   |
|-----------------|--------------------------|-------------------|----------------------|
| Dicamba rate    | Average actual yield     | Average predicted | predicted and actual |
| Dicambarate     | (Bu/A) and percent yield | percent yield     | yield reduction      |
| (oz/A)          | reduction                | reduction         | (percentage points)  |
| 0               | 73.8                     |                   |                      |
| 1/64 (1/1024 x) | 64.8/12%                 | 16%               | +4 ]                 |
| 1/32 (1/512 x)  | 61.8/16%                 | 18%               | +2                   |
| 1/16 (1/256 x)  | 58.7/21%                 | 27%               | (+6)                 |
| 1/8 (1/128 x)   | 54.3/26%                 | 30%               | +4                   |
| 0.25 (1/64 x)   | 41.9/43%                 | 36%               | (-7) Avg =           |
| 0.5 (1/32 x)    | 32.6/56%                 | 60%               | +4 +1.2              |
| 1 (1/16 x)      | 16.3/78%                 | 77%               | -1                   |
| 2 (1/8 x)       | 8.9/88%                  | 88%               | 0                    |
| 4 (1/4 x)       | 4.8/94%                  | 97%               | +3                   |
| 8 (1/2 x)       | 0/100%                   | 97%               | -3                   |

<u>Prediction Equation</u>: Y = Intercept value – 10.37 (lower stem lesions/cracking) – 3.92 (terminal leaf chlorosis) – 4.68 (leaf petiole base swelling) + 3.90 (stem epinasty) – 2.46 (terminal leaf necrosis) – 1.70 (terminal leaf cupping)

# **Results - Validation Study**

- Ability of the models to predict soybean yield loss was greater 15 days after dicamba application compared with 7 days (data not shown).
- V3/V4 exposure 15 DAA of dicamba at 1/64 to 0.25 oz/A
  - Average actual yield loss was of 11 to 29%.
  - The model underestimated average actual yield reduction by 2 percentage points or overestimated by as much as 8 percentage points.
  - Average difference in percentage points between predicted and actual yield was 1.8.

#### <u>R1/R2 exposure 15 DAA of dicamba at 1/64 to 8 oz/A</u>

- Average actual yield loss was of 12 to 100%.
- The model underestimated average actual yield reduction by as much as 7 percentage points or overestimated by as much as 6 percentage points.
- Average difference in percentage points between predicted and actual yield was 1.2.

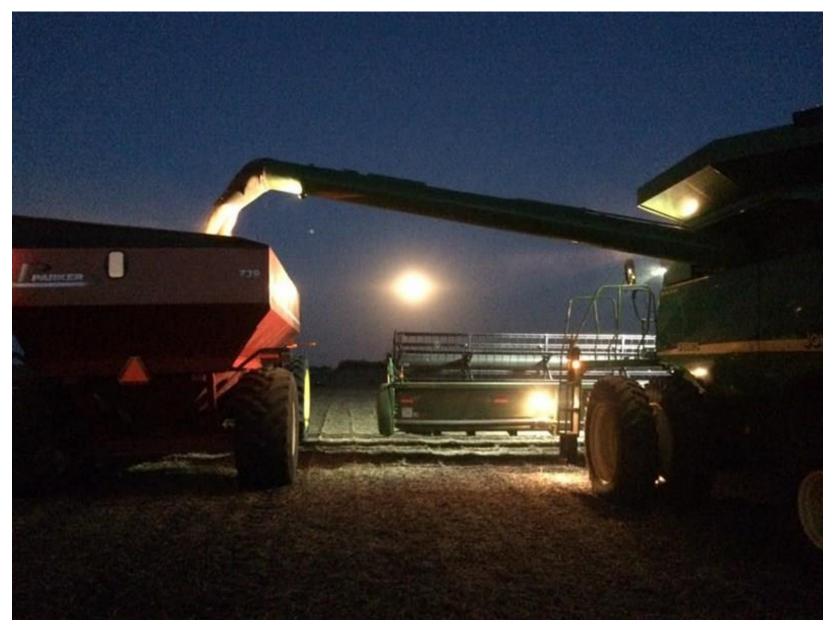
#### Next step – Develop field diagnostic procedure and software package/App

## Field Visit to Address the Problem

- Confirm that soybean injury is due to dicamba.
- Determine when exposure occurred:
  - Plants in vegetative stage = vegetative exposure
  - Cupping of leaves in upper canopy and accompanying pale leaf margins in moderate to severe range = vegetative exposure
  - Cupping of terminal leaves (rather than the upper canopy leaves) in moderate to severe range and whitish appearance of canopy due to leaf rollover = reproductive exposure
- Estimate days after exposure (7 days or less or 15 days or more).
- Enter data as requested

# **Data Entry**

#### Questions asked and data to be entered?


- When did exposure occur?
  - Vegetative or reproductive growth stage
- How long has it been since exposure occurred?
  - 7 days or less or 15 days or more
- For the following injury criteria provide a severity rating on a 0 to 5 scale with 0= no injury; 1= slight; 2= slight to moderate (producer concern); 3= moderate; 4= moderate to severe; and 5= severe.
  - For overall visual height reduction, compare plants in the affected area to those in the same field not affected and enter a value from 0 to 100%.
- As a guide, photos will be provided for each injury criterion with severity ratings assigned.

# **Results Obtained**

- Output received
  - "Based on the information entered predicted soybean yield loss may be as high as x%."
- Some common sense will have to be used if injury varies across the field.
  - The field may have to be subdivided with data entered for each sub-area to obtain an average yield loss for the field.
- A software package is under development.



### **Questions for Matt and Jim?**

