Injury Criteria Associated with Soybean Exposure to Dicamba and Potential for Yield Loss Prediction

Matt Foster

Dicamba in 2017

- <u>Arkansas</u>: 924 dicamba complaints filed (Arkansas Agricultural Department August 18, 2017)
- <u>Missouri</u>: 287 dicamba complaints filed (Missouri Department of Agriculture August 17, 2017)
- <u>Tennessee</u>: 118 dicamba complaints under investigation (Bradley August 10, 2017)
- <u>Mississippi</u>: 72 dicamba complaints made to the Department of Agriculture and Commerce (Bradley August 10, 2017)
- Complaints also reported in Iowa, Ohio, Illinois, Indiana, Kansas, Kentucky, Minnesota, Nebraska, North Carolina, North Dakota, and South Dakota

Objectives

- To determine the negative effects of dicamba on soybean growth and yield
- To to develop a model to predict soybean yield loss following dicamba exposure
- To validate the model and develop a software package/APP for use in yield loss prediction

Materials and Methods

Location:

- Central Research Station in 2013, 2014, and 2015
- Soil type: clay loam

Varieties:

 Indeterminate MG 4.8 to 5.1 soybean planted in early May to early June

Herbicide Treatments:

- Dicamba (Clarity diglycolamine salt) at 1/64, 1/32, 1/16, 1/8, 1/4, 1/2, 1, 2, 4, and 8 oz/A; 1/1000 to 1/2 of the use rate of 16 oz/A
- Nonionic surfactant at 0.25% v/v added to all treatments
- CO₂ backpack sprayer used with 15 GPA spray volume @ 30 psi
- Non-treated included for comparison

Materials and Methods

Application Timing:

- V3/V4 (third/fourth node with 2/3 fully expanded trifoliates)
- R1/R2 (open flower at any node on main stem/open flower at one of the two uppermost nodes on main stem)

Plot Size:

4 rows (30 inch spacing) x 30 feet;2 inner rows treated

Experimental Design:

 RCB with factorial arrangement of treatments (dicamba rate x application timing) and four replications

Materials and Methods

Data Collected:

- Fourteen injury criteria identified
- Rated 7 and 15 d after dicamba application (DAA) on a severity scale of 0 to 5 with 0= no injury; 1= slight; 2= slight to moderate (producer concern); 3= moderate; 4= moderate to severe; and 5= severe
- Overall visual assessment of soybean injury and visual height reduction made on 0 to 100% scale and soybean canopy height determined 7 and 15 DAA
- Mature plant height and yield determined

Data Analysis:

- ANOVA and Tukey-Kramer (P<0.05)
- Regression analysis
- Multiple linear regression to develop yield prediction model (to be discussed later)

Fourteen Dicamba Injury Criteria

- Upper canopy:
 - leaf cupping
 - leaf surface crinkling
 - pale leaf margins
 - leaf rollover/inversion
- Lower leaf soil contact
- <u>Leaf petiole</u>:
 - droop
 - base swelling

- cupping
- chlorosis
- necrosis
- epinasty
- Stem epinasty
- Lower stem:
 - base swelling
 - lesions/cracking

Leaf Injury Criteria

Leaf Petiole Base Swelling

Injury Severity Based on:

0-5 scale: 0= no injury; 1= slight; 2= slight to moderate (producer concern); 3= moderate; 4= moderate to severe; 5= severe

Terminal Injury Criteria

Injury Severity Based on: 0-5 scale: 0= no injury; 1= slight; 2= slight to moderate (producer concern); 3= moderate; 4= moderate to severe; 5= severe

Stem Injury Criteria

Stem Cracking

Injury Severity Based on:

0-5 scale: 0= no injury; 1= slight; 2= slight to moderate (producer concern); 3= moderate; 4= moderate to severe; 5= severe

Soybean Yield as Influenced by Soybean Growth Stage

Predicted Soybean Yield Loss

- Volatility
 - 0.1% of the use rate (Egan and Mortensen 2012)
 - 1/64 oz/A dicamba
 - V3/V4 (1%) and R1/R2 (2%)

Spray particle drift

- -1.0 to 8% of the use rate (Maybank et al. 1978)
- 1/8 oz/A to 1 oz/A dicamba
 - V3/V4 (9 to 54%) and R1/R2 (17 to 76%)
- As high as 16% of the use rate (Wolf et al. 1992)
- 2 oz/A dicamba
 - V3/V4 (79%) and R1/R2 (94%)

Soybean Mature Height as Influenced by Soybean Growth Stage

Value of Yield Prediction Models?

- Aid in critical decisions regarding:
 - Replanting of the crop
 - Additional crop inputs
 - Crop insurance claims
 - Liability issues
- "Gut feeling" currently only method of predicting soybean yield loss

Development of Model to Predict Yield

- Multiple linear regression analysis with a forward/stepwise selection procedure was used to analyze the 2013-2015 data
 - Separate analysis was performed for V3/V4 application at 7 and 15 DAA and for R1/R2 application 7 and 15 DAA
 - 14 injury criteria plus overall visual injury, visual height reduction, and canopy height were analyzed to determine their relationship to soybean yield
- For each application timing and DAA, only six of the seventeen variables were selected for use in the models to predict soybean yield
- By knowing the yield for the non-treated, yield loss can be calculated

Variables Included in Models

V3/V4 exposure		R1/R2 exposure	
7 DAA	15 DAA	7 DAA	15 DAA
visual height	lower stem base	visual height	lower stem base
reduction (%)	lesions/cracking (0-5)	reduction (%)	lesions/cracking (0-5)
lower leaf soil	visual height	lower stem base	terminal leaf
contact (0-5)	reduction (%)	lesions/cracking (0-5)	chlorosis (0-5)
lower stem base	terminal leaf	leaf petiole droop	leaf petiole base
lesions/cracking (0-5)	epinasty (0-5)	(0-5)	swelling (0-5)
canopy height (cm)	leaf petiole droop	upper canopy leaf	stem epinasty
	(0-5)	rollover/inversion	(0-5)
		(0-5)	
overall visual injury	leaf petiole base	leaf petiole base	terminal leaf necrosis
(%)	swelling (0-5)	swelling (0-5)	(0-5)
upper canopy leaf	stem epinasty	stem epinasty	terminal leaf cupping
surface crinkling	(0-5)	(0-5)	(0-5)
(0-5)			

Prediction Equations

• <u>V3/V4</u>

- <u>7 DAA</u>: \hat{Y} = Intercept value 0.30 (visual height reduction) 3.77 (lower leaf soil contact) 4.25 (lower stem base lesions/cracking) 0.76 (canopy height) 0.27 (overall visual injury) + 1.71 (upper canopy leaf surface crinkling)
- <u>15 DAA</u>: Ŷ = Intercept value 4.08 (lower stem base lesions/cracking) 0.46 (visual height reduction) + 5.38 (terminal leaf epinasty) 5.92 (leaf petiole droop) + 4.21 (leaf petiole base swelling) 3.77 (stem epinasty)

• <u>R1/R2</u>

- <u>7 DAA</u>: Ŷ = Intercept value 0.77 (visual height reduction) 6.93 (lower stem base lesions/cracking) 1.60 (leaf petiole droop) + 1.93 (upper canopy leaf rollover/inversion) 2.95 (leaf petiole base swelling) + 1.78 (stem epinasty)
- <u>**15 DAA:**</u> \hat{Y} = Intercept value 10.37 (lower stem base lesions/cracking) 3.92 (terminal leaf chlorosis) 4.68 (leaf petiole base swelling) + 3.90 (stem epinasty) 2.46 (terminal leaf necrosis) 1.70 (terminal leaf cupping)

Validation of Models

- Experiments conducted in Baton Rouge and St. Joseph, LA in 2016 using 'Asgrow 4835', an indeterminate MG 4.8 cultivar
- Dicamba formulation, rates, and application timings same as used to develop the models
 - Clarity (diglycolamine salt) at 1/64 to 8 oz/A (1/1000x to 1/2x) plus 0.25% v/v NIS
 - V3/V4 (third/fourth node with 2/3 fully expanded trifoliates) and R1/R2 (open flower at any node on main stem/open flower at one of the two uppermost nodes on main stem)

Validation of Models (Continued)

- Data were collected for the six variables specified by the model for each application timing and DAA
- Plots harvested to determine yield; nontreated yields of 67 Bu/A at Baton Rouge and 82 Bu/A at St. Joseph
 - Percent yield reduction vs. nontreated was calculated for each dicamba rate
- Using the models (equations), yield for each dicamba rate was <u>predicted</u> and percent yield reduction vs. nontreated was calculated
- To test the models, <u>predicted</u> percent yield reduction for each dicamba rate was compared to <u>actual</u> percent yield reduction

Validation Study Results Averaged Across Locations 15 DAA for V3/V4 Application

			Difference between
Dicamba rate	Average actual yield	Average predicted	predicted and actual
	(Bu/A) / percent yield	percent yield	yield reduction
(oz/A)	reduction	reduction	(percentage points)
0	74.3		
1/64 (1/1000 x)	66.1/11%	12%	+1 <mark>-</mark>
1/32 (1/512 x)	63.1/15%	17%	+2
1/16 (1/256 x)	59.7/20%	20%	0 Avg =
1/8 (1/128 x)	56.5/24%	22%	(-2) +1.8
1/4 (1/64 x)	52.8/29%	37%	+8
1/2 (1/32 x)	50.4/32%	52%	+20
1 (1/16 x)	41.7/44%	72%	Avg = +28
2 (1/8 x)	18.9/75%	89%	+21 +14
4 (1/4 x)	7.6/90%	99%	+9
8 (1/2 x)	0/100%	99%	-1

Validation Study Results Averaged Across Locations 15 DAA for R1/R2 Application

			Difference between
Dicamba rate	Average actual yield	Average predicted	predicted and actual
	(Bu/A) / percent yield	percent yield	yield reduction
(oz/A)	reduction	reduction	(percentage points)
0	73.8		
1/64 (1/1000 x)	64.8/12%	16%	+4 -
1/32 (1/512 x)	61.8/16%	18%	+2
1/16 (1/256 x)	58.7/21%	27%	+6
1/8 (1/128 x)	54.3/26%	30%	+4
1/4 (1/64 x)	41.9/43%	36%	
1/2 (1/32 x)	32.6/56%	60%	+4 Avg - +1.2
1 (1/16 x)	16.3/78%	77%	-1
2 (1/8 x)	8.9/88%	88%	0
4 (1/4 x)	4.8/94%	97%	+3
8 (1/2 x)	0/100%	97%	-3

Results - Validation Study

- Ability of the models to predict soybean yield loss was greater 15 days after dicamba application compared with 7 days (data not shown)
- V3/V4 exposure 15 DAA of dicamba at 1/64 to 1/4 oz/A
 - Average actual yield loss was of 11 to 29%
 - The model underestimated average actual yield reduction by 2 percentage points or overestimated by as much as 8 percentage points
 - Average difference in percentage points between predicted and actual yield was 1.8
- <u>R1/R2 exposure 15 DAA of dicamba at 1/64 to 8 oz/A</u>
 - Average actual yield loss was of 12 to 100%
 - The model underestimated average actual yield reduction by as much as 7 percentage points or overestimated by as much as 6 percentage points
 - Average difference in percentage points between predicted and actual yield was 1.2

Summary/Conclusions

- Injury criteria and severity of injury varied (rate and growth stage dependent)
- Greater yield reduction at the reproductive growth stage
- Soybean yield loss at a rate of 1/1000th of the use rate (exposure associated with volatility)
 - 1% for V3/V4 application and 2% for R1/R2 application
- Soybean yield loss at a rate of 1 to 8% of the use rate (exposure associated with spray particle drift)
 - 9 to 54% for V3/V4 application and 17 to 76% for R1/R2 application
- Soybeans have the ability to recover even when severe injury symptoms are observed
- A U.S. patent regarding the yield loss prediction model was filed in November of 2017
- Next step Develop software package/App (In progress)

Questions?

