Impact of Improved Soil Health on Sustainability and Profitability of Cotton

Amanda Free

Bill Robertson

Breana Watkins

2018 Louisiana Agricultural Technology and Management Conference

COTTON LEADSTM

Cotton LEADS™ is a program committed to responsibly produced cotton

Field to Market

The Keystone Alliance for Sustainable Agriculture

No-Till Cover vs. Farmer Standard No Cover

2015 and 2016 Research

Flow Meters

Trapezoidal Flume

- Consists of a submerged pressure transducer
 - Measures Depth of water flowing through flume.
 - Dimensions are known by Discovery Farm
- Equation set up in System
 - Reading produced represents discharge in cfs.
- This device allows for determination of how much water runs off on both irrigation and rainfall events.

A producers' main goal is to increase efficiency in hopes of becoming more profitable

- Practices that lead to improved efficiency often improves sustainability and soil health.
- A couple of strategies to increase Sustainability
 - Reducing Tillage
 - Converting to a no-till production system with cover crop.
- Fields had the availability to be split in half and watered in different sets.
- ½ of each field was composed of No-till with cover and the other ½ was composed of Farmer Standard.
- Which allowed for observation of how much the expenses differed among the two treatments.

Cover Crops

- Cereal Rye was broadcast seeded.
 - Buggy
 - Airplane
- Targeted seeding rate of 56 lb/A
- On No-till with cover fields
- On farmer standard side of field as well if producer desires.
- Sections were killed out on each side of the field to have comparison of cover vs. no cover

No-till with Cover and Stale seedbed rehipped with cover crop.

Field Conditions after 3.5 inches of Rain

No-till with cover crop

Stale seedbed rehipped with cover crop

Farmer Standard: Stale Seedbed

One of several tillage operations

Almost No-till

The only tillage operation

Farmer Standard- No Cover: Water Furrows for Irrigation

No-till: slight water furrows with residue exposed.

TILLAGE SAVINGS

- Disk 2 times \$24
- V-Ripper 1 time \$17/A
- Harrow 1 time \$6
- Land Plane/Float 2 times \$20
- Hipper/Roller 1 time fall \$7
- Hipper/Roller 1 time Spring \$7
- TOTAL \$81/A
- Field Cultivate before hipper/roller \$\$8
- TOTAL \$89/A

Return on Investment

PHAUCET (Pipe Hole and Universal Crown Evaluation Tool)

Water Conservation

- Delta Plastics' H2O Initiative launched in 2014
- Pipe Planner is the cornerstone of this initiative
- Goal to reduce irrigation water use within the Mississippi Delta by 20 percent by 2020

Irrigation Scheduling

Irrigation

- Furrow Irrigation with polypipe
- PHAUCET Program used to Determine outlet size to ensure uniform distribution among

furrows

- Irrigation Flow
 Meters
- Surge Valve

Irrigation Efficiency improved using PHAUCET

	Crop/	# of	Irrigation		Effective	Irrigation
Field	Year	Events	Volume	Runoff	Irrigation	Efficiency
			inches	inches	Inches	%
	Corn					
WellCot	2015	6				
Mean			2.23	0.31	1.92	85
Std. Dev			0.72	0.11	0.67	4
	Cotton					
Shopcot	2015	4				
Mean			2.44	0.22	2.22	91
Std. Dev			0.39	0.10	0.31	3
	Cotton					
Homeplace	2015	5				
Mean			1.70	0.31	1.39	81
Std. Dev			0.24	0.10	0.27	6

Irrigation Efficiency = (Irrigation Volume – Runoff/ Irrigation Volume)

IRRIGATION COST/SAVINGS

- Cost to Furrow irrigate \$7.50/A per irrigation
- 5 irrigations \$37.50
- Cut 2 irrigations out in 2016 \$15/A Savings
- Google Doug Peterson Rainfall Simulator Or just google Rainfall Simulator

Soil Health Indicators

Soil Your Undies

Demonstrating Soil Health

Soil Microbe Activity No-till with Cover vs. Farmer Standard No Cover

No-Till with Cereal Rye Cover Crop

Farmer Standard No Cover

Significant difference after being buried for five weeks.

Data Collected

 Throughout the year all of the producers inputs were recorded giving us the information we needed to calculate both fixed and variable costs.

• All fields were monitored for inputs, and entered into the Field to Market, Fieldprint Calculator.

Fieldprint Calculator A method used to measure Sustainability

Fieldprint Calculator Fieldprint Summary

No-till / Cover Crop

Till / No Cover Crop

Cover Crop Summary

 Irrigation water flow rates down the row slower in No-till / Cover

 Soil Compaction was consistently lower in No-till / Cover

 Soil Moisture was consistently higher in No-till / Cover.

2015 Lint Yield Averages (2 Fields)

2016 Lint Yield Averages (2 Fields)

Two Year Lint Yield Averages (2 Fields)

Two Year Operating Expense (\$/lb lint) Averages (2 Fields)

Cover Crop Economic Summary

- Cost/A averages same or less for No-till with Cover Crop
- Cost/lb Lint averages less for No-till with Cover Crop
- Cotton lint was produced \$0.05 per pound cheaper for no-till/cover compared to farmer standard till/no-cover in the two-year study

No-till vs. Farmer Standard % change over 2 years

Parameters	No-till Cover	Farmer Standard	% Change
Yield	1180	1068	+9.49%
Operating Expenses	.455	.505	-10.99%
Land Use	.00071	.00079	-11.27%
Soil Conservation	.00075	.00235	-67.53%
Irrigation Water Use	.016	.020	-23.53%
Energy Use	5328	5967	-11.99%
Greenhouse Gas Emissions	1.26	1.40	-11.11%

