Drift Issues

Topics

- What is drift
- What is not drift
- Why is drift so important
- Important aspects in drift control

Got Drift?

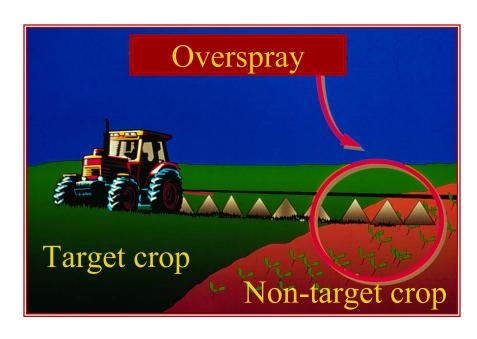
All application methods have some level of drift

Key Points

Drift

 Drift is the movement of spray droplets through the air outside the intend target

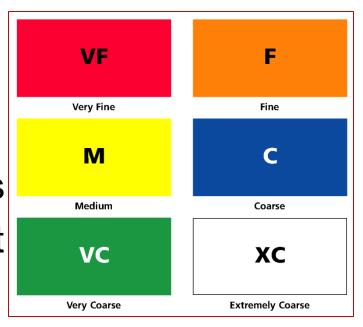
area


Drift can be caused by

- Weather conditions(wind, temperature)
- Sprayer setup
 (droplet size, height of application, nozzle selection, pressure)
- Combination of factors

Key Points

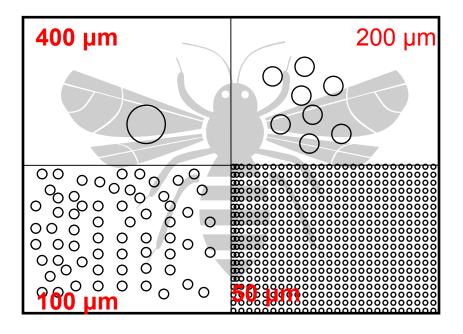
Overspray is not drif



Key Points

- Drift can be costly to your business and have negative impact in the farming community
- Knowledge is still the best tool against drift.
- Recognize potential for drift-prone situations and always decide against drift.
- Prevention of drift-prone situations is the best remedy

- Droplet Size
 - Most important factor for drift
 - Measured in microns (µm)
 - Fine droplets (<150 μm)
 are prone to drift (take longer to reach the ground)
 - Choose nozzle that produces largest droplet possible without affecting coverage and penetration



 Be aware that the same nozzle can produce coarse or fine droplets, depending on the pressure

	PSI										
	15	20	25	30	35	40	50	60	70	80	90
TT11001	С	M	М	M	М	М	F	F	F	F	F
TT110015	С	С	M	M	M	M	М	M	F	F	F
TT11002	С	С	С	M	M	M	М	M	M	M	F
TT11003	VC	VC	С	С	С	С	M	M	M	M	M
TT11004	XC	VC	VC	С	С	С	С	С	M	M	M
TT11005	xc	VC	vc	vc	vc	С	С	С	С	M	M
TT11006	хс	XC	VC	VC	VC	С	С	С	С	С	M
TT11008	XC	xc	VC	VC	VC	VC	С	С	С	С	M

- Drift control vs. Canopy Coverage
 - Systemic vs. contact products

Effects of lower droplet size

- Lower volumes of application can negatively impact drift
 - Reduced volume will reduce droplet size
 - Reduced volume will also increase concentration of active ingredient in the tank
 - Increase canopy penetration/coverage by increasing pressure can make a bad problem even worse

- Wind Speed and Direction
 - Very important for drift control
- Higher wind speeds increase chances of drift
- Low winds (< 3mph) are very erratic
- No wind situations can cause droplets to drift long distances
- Best spray scenario:
 - winds between 3 and 10 mph

- Temperature inversions can trap small droplets and deposit them off target
- What you can control:
 - Equipment setup, nozzle selection
 - Application technique
 - Field conditions
- What you cannot control:
 - Field location
 - weather

Equipment innovations

 Boom height control: keep constant height above the crop. Increase penetration, decrease drift potential

Equipment innovations

Sprayer mounted weather station

Equipment innovations

- Pulsating nozzles (Capstan):
 - Increase the ability to
 spray at various speeds
 and still maintain
 constant pressure and rate

Thank you!

Roberto Barbosa
Assistant Professor
Bio & Ag Engineering Dept
LSU AgCenter
(225) 578-1065
rbarbosa@agcenter.lsu.edu