New Insecticides

LATMC 2008

Natalie Hummel Michael Stout

Department of Entomology Rice Research Station

Insect Problems - 2007

- Early-season pests
 - -- Rice water weevil
 - -- Fall armyworm
 - -- Rice Leaf-miner
- Late-season pests
 - -- Rice stink bug
 - -- Stem borers
- New pest?
 - -Panicle Rice Mite

Warning

- Be sure to read and follow all chemical label recommendations
- Most chemicals recommended cannot be applied near Crawfish ponds
- Consult county agent for crawfish-rice recommendations.

Untreated

Rice water weevil Damage

- Pruned roots
- Decreases yield
- 10% yield loss X 6000 lbs/acre X \$10/cwt =
 - \$60 /acre

Rice water weevil Management

- Cultural
 - Delayed flooding
 - Rice is at the 5-leaf stage or beyond
 - Early planting → Early March
 - Draining fields → soil must crack
- Chemical
 - Pyrethroids, Dimilin, Trebon

Insecticides for Weevil Control

Insecticide	Class	Formulation/ Use Pattern
Karate, etc.	Pyrethroids	Early Post-flood
Rynaxypyr (Dermacor)	Anthranilic diamide	Seed treatment
Clothianidin	Neonicotinoid	Seed treatment
Thiomethoxam	Neonicotinoid	Seed treatment
Dinotefuran	Neonicotinoid	Granular – pre- or post-flood

Problems with *Pyrethroids*

- Inadequate control
- Environmental damage
- Incompatibility with crawfish production
 - 1. Pyrethroids extremely toxic to crawfish
 - LC50 < 1 ppb

Rotation - location

Insecticides for Weevil Control

Insecticide	Class	Formulation/ Use Pattern
Karate, etc.	Pyrethroids	Early Post-flood
Rynaxypyr (Dermacor™)	Anthranilic diamide	Seed treatment
Clothianidin (Cruiser)	Neonicotinoid	Seed treatment
Thiomethoxam	Neonicotinoid	Seed treatment
Dinotefuran	Neonicotinoid	Granular – pre- or post-flood

Pyrethroid Alternatives

- Have exhibited efficacies as good as, or better than, the pyrethroids
- Pesticides in trials & number of years:
 - Thiomethoxam
 4+ yrs of testing
 - 2. Rynaxypyr (Dermacor™) 3 yrs of testing
 - 3. Clothianidin 2 yrs of testing
 - 4. Dinotefuran 4 years of testing

Seed treatments

Rynaxypyr, Clothianidin & Thiomethoxam

Advantage

- 1. Ease of use
- 2. Highly effective
 - Large larvae died before damaging roots
- 3. Reduced drift
- 4. Less release of insecticide into the environment

Disadvantage

- 1. Prophylactic approach
- 2. Restricted to drillseeded rice

2007 Dermacor™ Trial

LSU AgCenter Rice Research Station

2007 Dermacor[™] Trial LSU AgCenter Rice Research Station

Question: Does Dermacor kill eggs or larvae?

Feeding Experiment – leaves from seedlings

Neonicotinoids: systemic activity

Insecticide	Rate (grams ai/100kg seed)	RWW mortality, 72 hrs	FAW mortality, 72 hrs
Clothianidin	0	13%	8%
	250	97%	36%
Thiomethoxam	0	17%	10%
	115	90%	20%

Thiomethoxam seed treatment, 2007

Post-flood granule (Dinotefuran)

Advantage

- 1. More compatible with water-seeded rice?
 - By comparison to seed treatment
- 2. "Rescue" treatment
 - Use only when larvae present on roots

Disadvantage

- 1. May not be as effective as seed treatments
- 2. Not as easy to use as seed treatment

Dinotefuran, pre/post split and post-flood, 2006

Treatment	Larvae per core sample ± s.e. on:			
	May 30	June 7	June 14	
Untreated control	19.9 ± 2.1	23.8 ± 5.0	19.3 ± 7.0	
Karate Z, 0.03 lbs ai/acre, 1 d post-flood	0.3 ± 0.2 *	2.4 ± 0.8 *	6.1 ± 2.2	
Dinotefuran, 240 gm ai/acre, pre + post split	0.8 ± 0.3 *	0.6 ± 0.3 *	2.6 ± 1.0 *	
Dinotefuran, 360 gm ai/acre, post treatment	17.4 ± 2.0 (before)	4.9 ± 0.8 *	1.2 ± 0.3 *	

Dinotefuran - greenhouse experiment

New Insecticides - Summary

1. 4 insecticides

- Multiple years of testing for efficacy against the rice water weevil
- Seed treatments provide excellent control
 - Drill-seeded rice
- May be much more compatible with crawfish production than pyrethroids Mike will discuss in later presentation
- Granular Dinotefuran
 - may be "rescue" or curative treatment
 - may be suitable in water-seeded rice

Acknowledgments

Collaborators

Ray McClain, LSU RRS Gary Barbee, Agronomy

Graduate Students

Srinivas Lanka

Research Associates

Rita Riggio Marty Frey Ryan Pousson **Funding**

La. Rice Research Board USDA, Pest Management Alternatives Program

Natalie A. Hummel, Ph.D.
Rice Extension Entomologist
LSU AgCenter
nhummel@agcenter.lsu.edu

Cell: 225-223-3373

Office: 225-578-7386