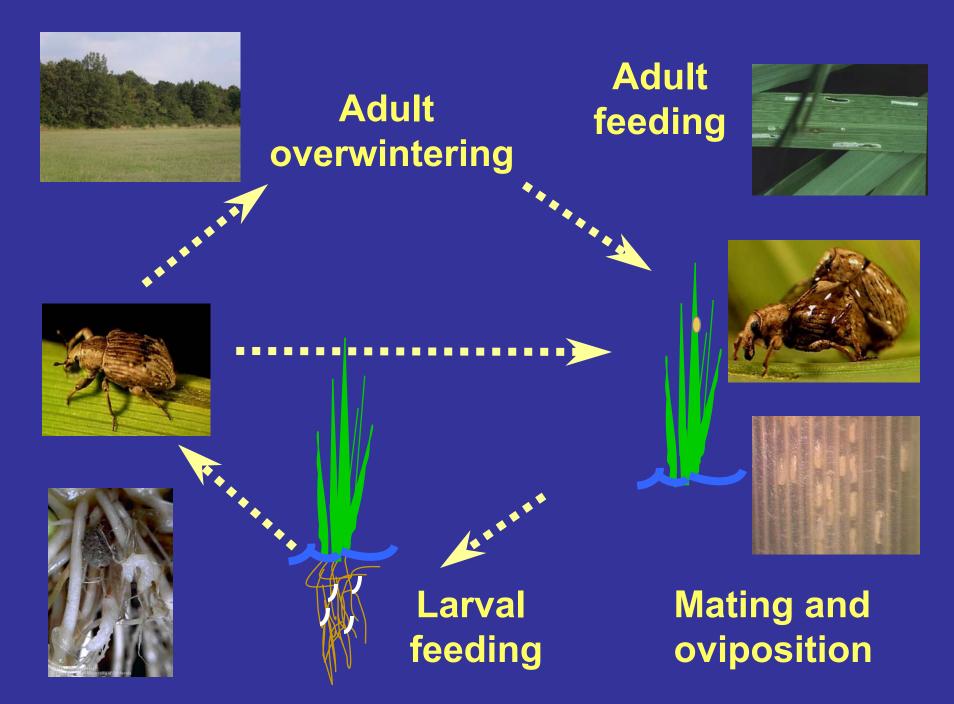


Integrating Insect Pest Management and Crawfish Production

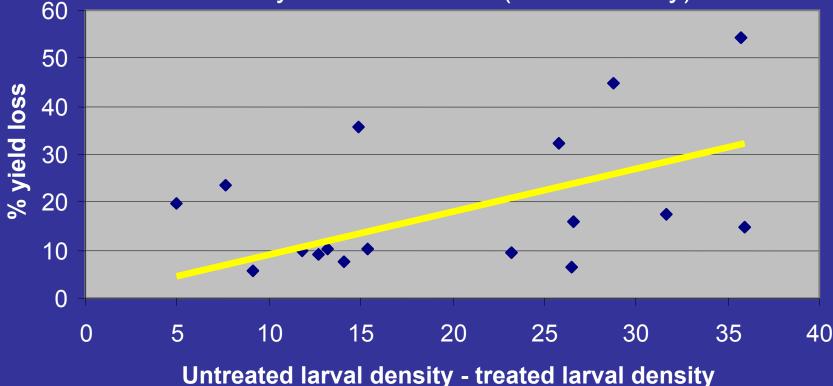
Michael Stout Ray McClain Department of Entomology Rice Research Station

Acknowledgments


Collaborators Ray McClain, LSU RRS Gary Barbee, Agronomy

Graduate Students Srinivas Lanka

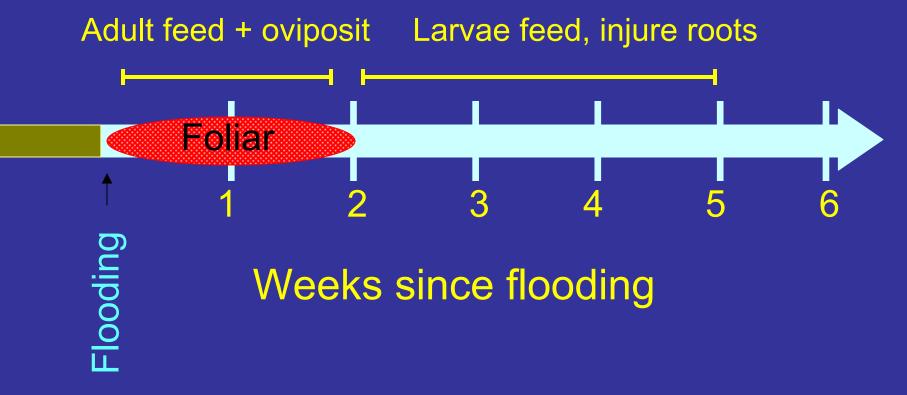
Research Associates Rita Riggio Marty Frey Ryan Pousson



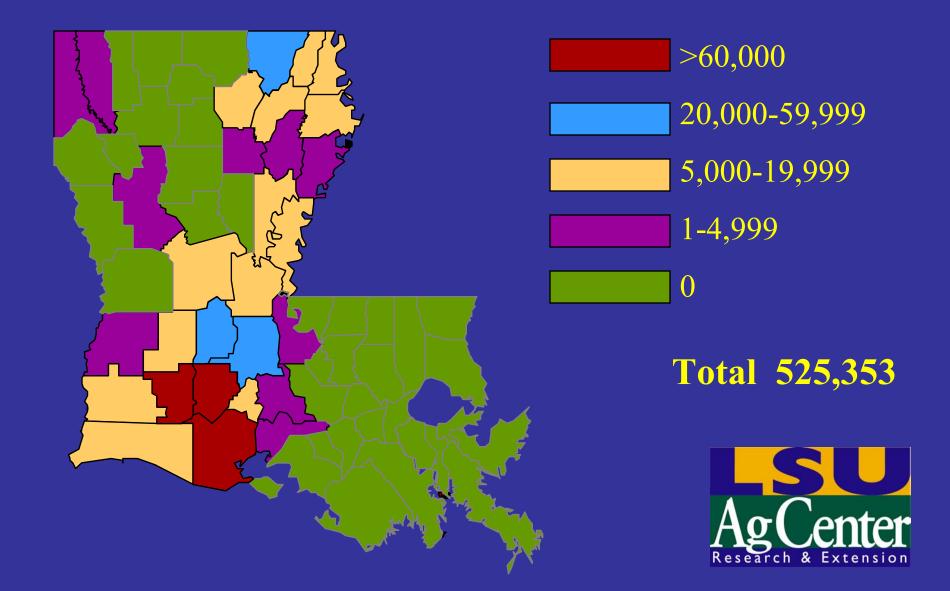
Funding La. Rice Research Board USDA, Pest Management Alternatives Program

Weevil larval density vs. yield loss Calculated from insecticide evaluations, 2002-2007

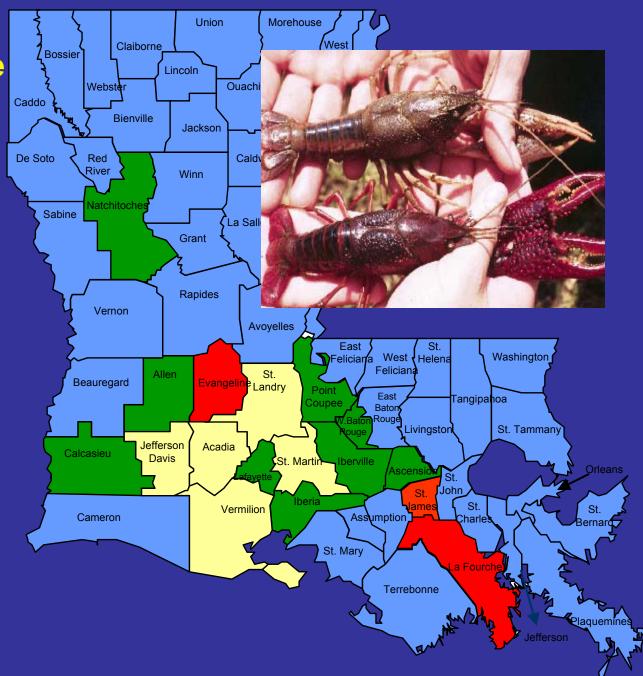
% yield loss = 0.9 x (larval density)



Issues surrounding use of insecticides (pyrethroids)


- Cost
- Inadequate control
- Environmental damage
- Incompatibility with crawfish production

Pyrethroid insecticides are extremely toxic to crawfish!!


LC50's < 1 ppb

2005 Rice Acreage by Parish

2004 Crawfish Acreage Total – 118,250

- 10,000 ->
- **5,000 9,999**
- **1,000 4,999**
- <1,000

Source: Louisiana Ag Summary 2004

Crawfish Forage Crop Rice Crop Fallow -----Year 1 ------ Year 2 ----- Year 3 ------Win. Spr. Sum. Fall Win. Spr. Sum. Fall Win. Spr. Sum. Fall

Monocropping or Permanent Pond System

Rice-Crawfish-Rice Double Cropping

Rice-Crawfish-Fallow (Beans) Field Rotation

Routes of exposure

- Drift of insecticide from rice field into neighboring pond
- Mortality of indigenous crawfish population in rice field
- Mortality of brood stock
- Release of contaminated water into pond

How can impact of weevil management on crawfish production be minimized?

- Use toxic insecticides in a way that minimizes their impact
- Use insecticides less toxic to crawfish
- Increase reliance on alternative strategies

Use toxic insecticides in a way that minimizes their impact

Use formulations less prone to drift: a) Trebon (granular pyrethroid) b) Pyrethroids coated/impreganted on fertilizer Fertilizer impregnation test, 2005 LSU RRS, small plots, drill-seeded on 5 April Urea coated manually

- 1) Untreated control
- 2) Karate, 0.04 lb ai/A, 1 day pre-flood
- 3) Karate, 0.04 lb ai/A, 2 days post-flood
- 4) Karate, 0.04 lb ai/A, 6 days post-flood
- 5) Karate, 0.04 lb ai/A, 20 days post-flood
- 6) Mustang Max, 0.025 lb ai/A, 2 days postflood

Treatment	Larvae per core sample \pm s.e. on:						
	5/26/05 (22 6/2/05 (29 6/8/05 (35 dpf) dpf) dpf)						
Untreated	9.2 ± 1.1	18.1 ± 2.3	19.6 ± 2.4				

Karate 2 d	3.1 ± 0.4	4.8 ± 1.4	$\delta.\delta \pm 1.3$
post-flood			
Karate 6 d	3.9 ± 0.3	8.2 ± 1.3	7.9 ± 1.4
post-flood			
Karate 20 d	5.8 ± 1.0	8.2 ± 0.3	12.8 ± 2.3
post-flood			
Mustang	2.3 ± 1.0	6.4 ± 1.0	6.8 ± 1.4
Max 2 d post			

Treatment	Larvae per core sample \pm s.e. on:						
	5/26/05 (22 6/2/05 (29 6/8/05 (35 dpf) dpf) dpf)						
Untreated control	9.2 ± 1.1	18.1 ± 2.3	19.6 ± 2.4				
Karate pre-	2.1 ± 0.4	2.7 ± 0.4	5.9 ± 0.6				

Karate 6 d	3.9 ± 0.3	8.2 ± 1.3	/.9 ± 1.4
post-flood			
Karate 20 d	5.8 ± 1.0	8.2 ± 0.3	12.8 ± 2.3
post flood			

Treatment	Larvae per core sample \pm s.e. on:							
	5/26/05 (22 6/2/05 (29 6/8/05 (35 dpf) dpf) dpf)							
Untreated control	9.2 ± 1.1	18.1 ± 2.3	19.6 ± 2.4					
Karate pre- flood	2.1 ± 0.4	2.7 ± 0.4	5.9 ± 0.6					
Karate 2 d	3.1 ± 0.4	4.8 ± 1.4	8.8 ± 1.3					

 6.4 ± 1.0

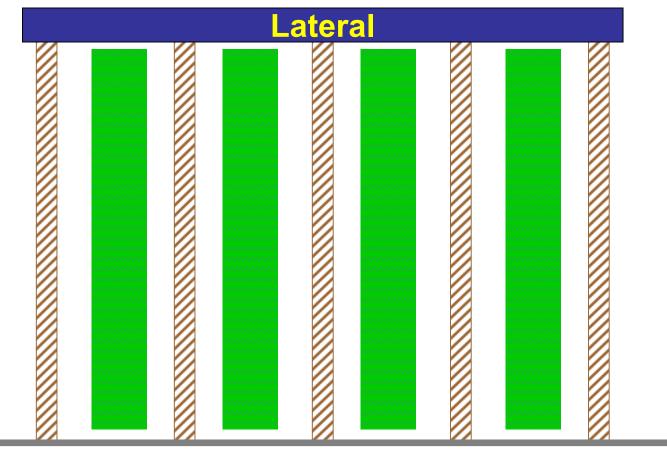
 2.3 ± 1.0

 6.8 ± 1.4

Fertilizer impregnation tests Summary of results, 2004-2005

- **Pre-flood** and **early** post-flood applications of fertilizer-impregnated pyrethroids appear to work as well as foliar applications
- Late post-flood applications have lower efficacy than early post-flood applications. There may be some larvicidal activity, but this use pattern is not recommended
- Efficacy of pyrethroids in sufficient in fields with heavy infestations
- Problems with this approach

Use insecticides less toxic to crawfish


A number of new insecticides are now being seriously considered for the rice market, and these insecticides appear to be more compatible with crawfish production

Potential "pyrethroid alternatives" in rice

Insecticide	Class	Formulation/Use Pattern
Rynaxypyr (Dermacor)	Anthranilic diamide	Seed treatment
Clothianidin	Neonicotinoid	Seed treatment
Thiomethoxam	Neonicotinoid	Seed treatment
Dinotefuran	Neonicotinoid	Granular – pre- or post-flood

Crawfish/insecticide tests Summary of experiments

In a series of preliminary field experiments, caged crawfish exposed to dinotefuran, clothianidin, and Rynaxypyr have experienced mortality rates similar to, or only slightly higher than, crawfish in control plots

Road

- 1. Untreated seeds
- 2. Icon-treated seeds (0.05 lb ai/A)
- 3. Dermacor-treated seeds (0.2 mg ai/seed)
- 4. Dinotefuran pre-flood foliar (240 gm ai/A)

Table 1. Mortality of red swamp crawfish placed in enclosures at <u>first flush</u> in simulated rice plots treated with various rice insecticides. Mortality, number and percentage dead, was assessed at 2 days after stocking.

Days After Stocking	Min - Max Temp. ºC	Untreated Control	Icon	Rynaxypyr
2	19 - 31	0	$2 (20\%)^1$	$2(20\%)^2$

¹ Dead = 1 immature and 1 mature; and 3 (30%) additional crawfish were moribund.

² Dead = 2 mature.

Table 2. Mortality of red swamp crawfish placed in enclosures <u>after permanent flood</u> in simulated rice plots treated with various rice insecticides. Mortality, number and percentage dead, was assessed at 2, 5, and 7 days after stocking, and results are cumulative.

Days After Stocking	Min - Max Temp. ºC	Untreated Control	Icon	Rynaxypyr	Dinotefuran ⁷
2	17 - 32	3 (25%) ¹	2 (17%) ²	3 (25%) ³	0
5	15 - 35	5 (42%) ⁴	3 (25%) ⁵	3 (25%) ³	0
7	19 - 30	5 (42%) ⁴	4 (33.3) ⁶	4 (33.3) ⁶	0

¹ Dead = 1 immature and 2 mature.

² Dead = 2 mature.

³ Dead = 3 immature.

⁴ Dead = 2 immature and 3 mature.

⁵ Dead = 3 mature; and 1 additional crawfish (8%) was

moribund.

⁶ Dead = 3 immature and 1 mature.

⁷ Assessments for crawfish in Dinotefuran treatment were actually 1, 4, and 6 days after stocking, respectively.

Rynaxypyr seed consumption trial

	Days From Initiation of Trial								
	1	3	7	9	18	21	28	30	37
Control (Rep 1)	0	0	0	0	0	0	0	0	0
Control (Rep 2)	0	0	0	0	0	0	0	0	0
Control (%)				1			0		0
Low (Rep 1)	0	0	0	1	1	0	0	0	0
Low (Rep 2)	0	0	0	0	0	0	0	0	0
Low (%)							16.7		16.7
High (Rep 1)	0	0	0	0	0	0	0	1	0
High (Rep 2)	0	0	0	0	0	0	0	0	0
High (%)							0		8.3

Crawfish/insecticide tests Further testing, 2008-2009

- Field trials with caged crawfish in treated plots
- Laboratory, acute toxicity experiments

Increase reliance on cultural practices

- Draining
- Early planting
- Delayed flooding
- Shallow flooding

Summary

- Use of granular "formulations" of pyrethroids reduces drift into neighboring ponds, but there are problems associated with the use of these formulations
 - --efficacy
 - --timing of fertilizer vs. insecticide
 - --worker safety
- New insecticides may soon be available that are more compatible with crawfish production
- Cultural practices can reduce amount of insecticide needed to control weevils