

IDENTIFYING and MANAGING MULTIPLE STRESSES IN COTTON

Louisiana Agricultural Technology & Management Conference

Alexandria, LA

February 8, 2008

C. Overstreet, M. Wolcott, E. Burris

CATAHOULA PARISH

July 2, 2003 150,000 reniform per 500 cm³

FRANKLIN PARISH

July 16, 2007

Reniform levels in bad areas 40,000 per 500 cm³ Reniform levels in good areas 80,000 per 500 cm³

MOREHOUSE PARISH

Sterlington Fine Sandy Loam

July 6, 2007 Classical root-knot/Fusarium wilt after corn

MOREHOUSE PARISH

Sterlington Fine Sandy Loam

August 1, 2006 Classical root-knot/Fusarium wilt after cotton

June 29, 2007 1600 root-knot nematode 45,560 reniform nematode

Root-knot

Reniform

Root-knot Reniform Fusarium wilt

Root-knot Stunting

Sulfur, Potassium, Zinc Issues

3060 Rootknot

1620 Rootknot

900 Rootknot

1440 Rootknot

Root-knot 1600 / pint Reniform 45560 / pint pH 4.7 Potassium – Very Low Phosphorus – Very Low Sulfur – Low Zinc - Low

TENSAS PARISHPANOLA FIELD 2005NEMATODE AND SOIL TEST RESULTS

STATUS	RK	SOIL	SOIL	SOIL	SOIL	SOIL
	POP	рН	OM	K PPM	S PPM	ZN PPM
WEAK AREA	13320	5.2	0.56	90	3.71	0.44
STRONG AREA	20880	6.1	0.94	100	6.04	0.55

TENSAS PARISHLEVEE FIELD 2005NEMATODE AND SOIL TEST RESULTS

STATUS	RK	SOIL	SOIL	SOIL	SOIL	SOIL
	POP	рН	OM	K PPM	S PPM	ZN PPM
WEAK AREA	1035	4.76	0.62	119	3.53	0.45
STRONG AREA	8387	5.41**	1.20**	186**	4.47**	0.78**

** P > .01

"Ice Cream Soil Syndrome" Low-yielding areas in what should be very productive soils

"Ice Cream Soil Syndrome" **Roxana very fine sandy loam Commerce silt loam Bruin silt loam Dundee silt loam Sterlington silt loam**

"Ice Cream Soil Syndrome" Damaging levels of root-knot nematode, reniform nematode, or both

"Ice Cream Soil Syndrome" One or more soil fertility issues Low pH Low K **Low Sulfur** Low Zinc

IDENTIFYING and MANAGING MULTIPLE STRESSES IN COTTON

The Potential for Site-Specific Management

Cotton Price: \$0.55 / Ib Rent: 20% Crop Share Direct & Indirect Expenses: \$566

PROFIT MAP

Loss	13 ac.
Cover Loss	22 ac.
Real Profit	43 ac.

Cotton Price: \$0.55 / Ib

Rent: 20% Crop Share

Direct & Indirect Expenses: \$566

Site-Specific Nematode Management Research Cotton Yield Response and Nematode Population Issues

Site-Specific Nematode Field Research Locations 2004-2007

> Holley Farms Bastrop, LA Ouachita River Soil

MOREHOUSE PARISH, LOUISIANA

Lint yield (lb/a) with and without Telone II

Field	Telone II	No Telone II	Diff.
RR Cut Zone 1	1093.2	783.2	310
RR Cut Zone 2	1125.3	851.5	275
RR Cut Zone 3	1137.0	939.9	197
Spyker Field Zone 1	1208.8	982.5	226
Spyker Field Zone 2	1152.8	1027.6	125
Faulk Field Zone 1	1081.8	908.0	174
Perry Cut Zone 1	1290.7	966.7	324

LSU Agricultural Center Overstreet, Wolcott, Erwin, & Letlow

EC_{a-dp} Zones Zone 1 21.9 – 49.9 mS/m Zone 2 49.9 – 74.1 mS/m Zone 3 74.1 – 92.6 mS/m Zone 4 92.6 – 110.3 mS/m Zone 5 110.3 – 128.5 mS/m Zone 6 128.5 – 147.9 mS/m Zone 7 147.9 – 196.1 mS/m SAMPLE TRANSECT

3

2

LEVEE FIELD (L)

TELONE PLOTS

CEMETERY NORTH FIELD TENSAS PARISH, LA 07/12/2004 John Deere 6 row
 Microwave Sensors
 Greenstar II System
 USDA – ARS Yield Editor
 SSToolbox

Results

Cotton yield response to nematicides such as Telone was not the same across EC (soil texture) zones

Yield responses were observed in only the lower EC (lighter textured, less clay) zones

Results

Optimum yields were obtained on some soils in spite of the presence of nematode populations previously considered to be potentially "extremely" damaging

Tensas Parish

3 Year Mean Cotton Yield Telone II Response

Root-knot Population/Pint Soil Fall 2005

Tensas Parish

3 Year Mean Cotton Yield Telone II Response

Root-knot Population/Pint Soil Fall 2005

METHODS

In Aug. 2007, sampled soil zones to depth of 24 inches in 6 inch increments Samples replicated 4x per soil zone GPS sample locations – check plots Nematode population analysis Particle size analysis **Soil nutrient analysis**

Note: Image source credit to Derrick M. Oosterhuis Ph.D. University of Arkansas

Note: Image source credit to Derrick M. Oosterhuis Ph.D. University of Arkansas

Site-Specific Nematode Management Research Soil Texture and Soil Fertility Issues

Sand Content by Depth

Sand Content by Depth

Clay Content by Depth

Cemetary North Field Elevation and Depth to Clay

RESPONSIVE SOIL

NON-RESPONSIVE SOIL

Soil Potassium by Depth

Soil Zinc by Depth

□ A (0- 6) □ B (6-12) ■ C (12-18) □ D (18-24)

Soil Sulfur by Depth

□ A (0- 6) □ B (6-12) ■ C (12-18) □ D (18-24)

Soil Phosphorus by Depth

Note: Image source credit to Derrick M. Oosterhuis Ph.D. University of Arkansas

Note: Image source credit to Derrick M. Oosterhuis Ph.D. University of Arkansas

Recognize from the start that this is a multi-year process

You will never get it right on the first try

Divide fields into soil textural zones using best available data **1** Personal knowledge of the field **2)** NRCS Soils Data (Free) **3)** Non-crop imagery (DOQQ) (Free) **4)** Electrical Conductivity (EC) data

Collect composite zone samples from the light-textured soil zones in the fields

Collect a sample large enough to divide and have samples for both nematode analysis and nutrient / pH analysis

FERTILITY IS IMPORTANT

- The types of soils where the most severe injury usually occurs are also the soils that are most likely to have severe fertility issues – deep sandy soils, highly permeable, low CEC, low organic matter, low pH, low potassium, low sulfur
- TAKE CARE OF SEVERE NUTRIENT ISSUES FIRST

Apply Telone II to "verification" strips in fields at regular intervals

Evaluate crop response using aerial imagery or yield monitor data, or both

Verification strips Fumigant

S

Verification strips
Fumigant
No fumigant

SUMMARY

The development of site-specific nematode management plans for Mississippi River alluvial soils must consider factors other than nematode population alone.

Yield response was more related to soil texture through the profile than nematode populations

SUMMARY

Greatest yield responses were obtained on light-textured soils extending deep into the soil profile

The areas of responsive soil and nonresponsive soil were best represented by the deep electrical conductivity values, as obtained using the Veris 3100 EC Mapping Cart

EPIPHANY

Perhaps "soil" drives the nematode damage equation much more than simply a function of nematode population levels

Charles Overstreet

Precision Agriculture and Chemical Treatments

Hypotheses:

Limited Success for Site Specific Practices:

Effectiveness Questionable

"Spatially variable applications offer the promise of significant savings in crop production costs while preserving crop yield. **However**, the effectiveness of these approaches has not been adequately quantified with <u>supporting data</u> <u>and statistical findings."</u>

Progress is being made in determining.....

The Right Amount...
At the Right Place...
At the Right Time!!!
with supporting data and statistical findings."

Progress is being made in determining.....

> The Right Amount... >At the Right Place... >At the Right Time!!! with supporting data and statistical findings." »By »Dr. Kevin McCarter

THANK YOU

NEMATICIDES Pre Plant Fumigants

VAPAM or K-PAM

NEMATICIDES **Insecticide Hopper TEMIK (Aldicarb)** Seed Treatments **AVICTA, AERIS**

HIGH-END NEMATICIDE RESPONSE

,D

7

Tensas Parish 3 Year Mean Cotton Yield Telone II Response

