UAV Technologies for Louisiana Agriculture

Randy R. Price Jimmy Flanagan, Al Orgeron, Charles Malveau LSU AgCenter

By

Dean Lee Extension and Research Center

Summary

Definition of UAV's Current FAA rules Typical Manufacturers What's available ■ Different sizes, etc. Some that we have been using Typical data you can get with units

Different Names:

Drones

- UAV Unmanned aerial vehicles
- Name listed by FAA and AUAVS society
 - UAS Unmanned Aerial Systems
 - Includes flying platform and all related equipment to support system (video downlink, FPV – first person flying, etc.)

UAS Economic Potential

AUVSI's Recently Released Economic Impact Report:

- The UAS global market is currently more than <u>\$11 billion</u> and will total almost <u>\$140 billion</u> over the next 10 years.
- The economic impact of UAS airspace integration will total over <u>\$13.6 billion</u> in the first three years and will grow sustainably for the foreseeable future, cumulating to over <u>\$82.1 billion</u> between 2015 and 2025.
- Precision agriculture will total approximately 80% of the known potential commercial markets for UAS.

www.auvsi.org

Uses in Farming:

Overhead Images of Field or Crop by Consultants Irrigation Monitoring: Far field monitoring, etc. Check pivots Spot Spraying and detection of bugs, insects, and weeds

Uses in Shipping:

 Movement of letters and light weight cargo around cities

- Fly cargo planes across oceans and other open expanses of land
- Construction site surveying

Etc.

UAV - 0.3 KWh

Person– 1.4 KWh in gasoline not including elevator weight movements

Current FAA Rules:

Currently for research and non commercial use only Should get a license - currently only for research units Max 400 feet flying height and maintain line of site Do not fly within 5 miles of airports FAA will try to have full rules in 2015 Concern over upcoming rules: Make it hard for individual to get a license

Different Systems:

Multi-rotor copters:

- In Place Take off and Landing
- Slower speeds than others 27-30 MPH
- Batteries only last about 10 to 20 minutes
- Regular helicopters
 - Faster speeds, longer flight time
 - Can be gas powered
 - Flight time: 30 minutes to several hours

RC Airplanes

- Longer flight times: 30 minutes to 40 minutes
- Faster speeds (50 to 70 MPH)
- Need a take off and landing area
- Some built to "stall" landing without damage

Copters We Have:

Quadcopters (4 blades)
Hexcopter (6 blades)
Tri-copters (3 blades)

DIY Drones:

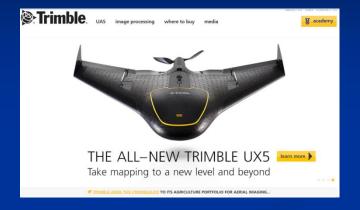
- Free Software
- Purchase the electronics board
 - 3-D robotics (America)
 - RCTIMER (China)
- Works very well
- For planes, helicopters, multirotors, boats
- Fully stabilized flight, fully autonomous options from take off to landing
- Up to 500 waypoints
- Inexpensive:
 - \$250.00 for flight system
 - Frame: \$300 to \$1000
 - Camera: \$300 to \$1000

Mission Planner – DIY Drones

 Free
 Available on the IPhone, Android systems

Other Manufactures - DJI Drones

Phantom: Top Speed: 21 MPH Phantom 2 Vision: Built-in camera ■ Wireless FPV for 900 ft. Position hold Price: \$1,000



Trimble Unit:

UX5:

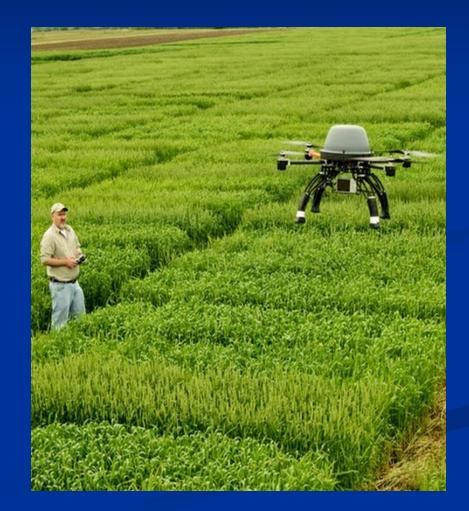
- Airplane type
- High-end digital 35 mm camera
- Software:
 - Trimble Business Center (TBC) photogrammetry module
- Uses a Yuma for ground control
- Sold in many other countries, but not the U.S. yet
- Currently listed for construction and mining

Where Trimble UAV is Sold:

<u>White</u>: not sold in that country
<u>Grey</u>: sold and used in that country

Biggest difference between systems:

Most system have a GPS,
Some only hold position when invoked
Other can actually fly waypoints autonomously



Typical Components Needed For System:

Training:

Some training to operate systems -1/2 to 2 days Learn about systems Flying and take off / landing skills needed Minor adjustments to system: Some "hobby" skills required

Typical Flight Parameters:

Flying Time

 About 10 minutes per battery (6 to 8 minutes usable time)

Flight speed

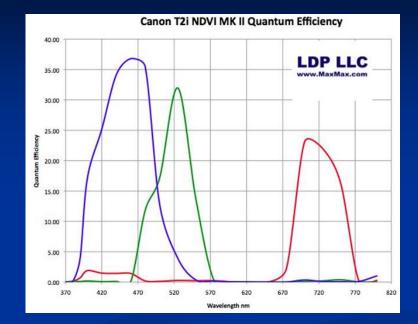
- 10 MPH in Automode (fastest speed 27 MPH)
- Weight Capacity: Lift 0.5 to 5 lbs
 - Small Size Copters:
 - GoPro type cameras
 - Medium to Large Size:
 - Multiple cameras (NDVI and RGB, etc.), larger single cameras.

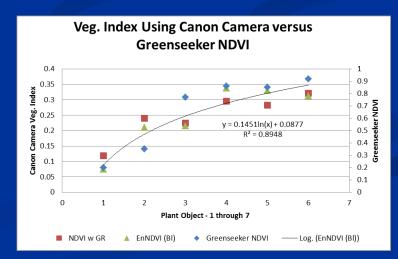
Area Covered:

 40 to 100 acres dependent upon how you use system

Cameras for Agriculture Work:

RGB and NDVI NDVI Types Camera: Vegetative indexes related more to chlorophyll and plant health Regular RGB Camera: Visual assessment Drain cuts, etc. Burn down accessment

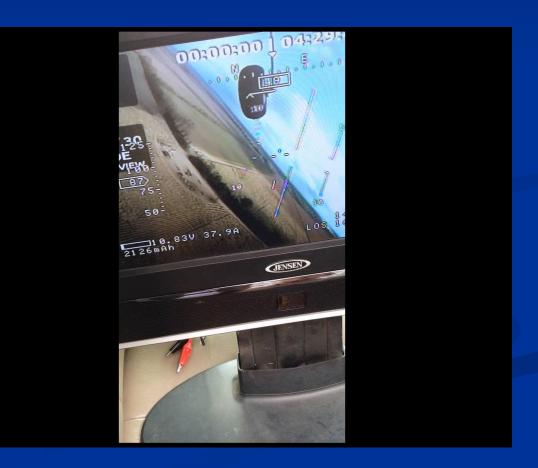




Newer NDVI Cameras:

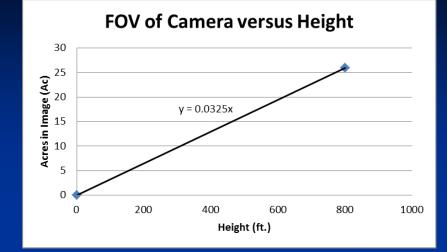

- Have special filter to block red and allow NIR input <u>maxmax.com</u>
- Calculate vegetative index using Blue or Green ENNDVI, etc.
- Tests against Greenseeker produced similar results

Typical Pictures:



Typical Pictures with GoPro:

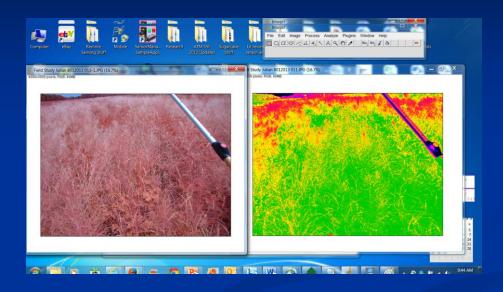
Live video from airplane => GoPro Black / 1000 mW 1.2 Ghz Transmitter



Automated Flight over Field:

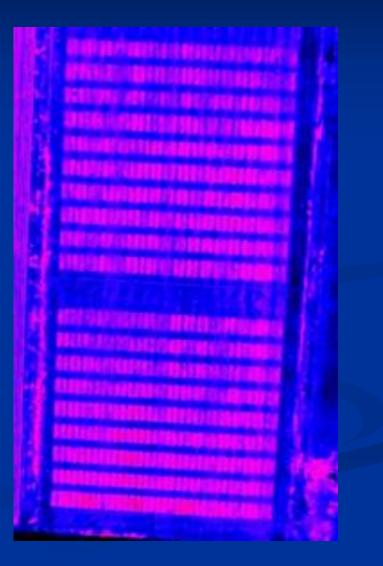
Typical Acres per Image:

800 ft
Canon 300 Camera:
Acres = 0.0325 * (ft. of flying height)
26 acres in photo
At 450 ft. => 15 acres



Stitched Imagining – Photoshop:

Image J
Free
AgPixel
\$300
Photoshop


Software:

EnNDVI Transformation of Image:

 More pink areas have higher vegetation levels
 Use histogram to obtain average numbers for individual areas or plots for analysis

Multiple Flights Paths:

- Systems work good for repeating flight paths
- Four continuous passes in a row
- Very windy day20 MPH wind
- 6 blade helicopter

Longer Flights with UAV:

6 rotor hex/5000 maHr battery/6 minutes/10 MPH/No Wind

Covered the perimeter of a 2000 ft x 825 ft area:
 37.8 acres

Airplane UAV:

- Same autopilot as copters units
- 6 ft. wingspan
- All foam
- Very safe
- Approximate cost:
 - \$950 without camera
- Things we noticed about system:
 - Take off was harder
 - System flown much higher because size was bigger – 1200 ft.

Images from Airplane:

Some Companies Already Providing Flying Services:

- Provide service to obtain overhead images:
 Mark Townsend
- www.louisianahelicam.com(318) 680-9885

Conclusions:

- UAS Flight systems mature and available at "reasonable" prices
 - Flight technologies and auto-pilots exceptional
 - Some hobby / technician skills needed, but system seem fairly easy to use and maintain
- Camera and Image Technologies
 - Getting better, but still need faster methods to automatically pull images from camera and analyze
 - Ground truth still needed
 - Video systems work well!

Where to Get:

Build your ownBuy from someone else:

C and C Performance LLC Eye in the Sky Imaging 9312 Pecan Tree Drive Baton Rouge, La. 70810 225-284-8919

Vishal Singh Pixobot, LLC <u>www.pixobot.com</u> 402-419-9555 Mark Townsend www.louisianaheli cam.com (318) 680-9885

Other vendors:
 Ury Manufacturing

The End

Automatic Take-off and Landing:

