Interpreting Plant Tissue and Soil Sample Analysis

Dan Fromme Associate Professor-Cotton, Corn, & Grain Sorghum Specialist LSU AgCenter Dean Lee Research & Extension Center Alexandria, Louisiana

Fertilization Philosophies

- Due to variations in soil properties from one geographic region to another, soil testing labs may use different extraction methods.
- Rapid buildup/maintenance versus sufficiency level
- Crop rotations
- Soil texture
- Yield goal

Calibrations for the Bray-1, Mehlich III, and Olsen soil tests.

Sufficiency level	Bray-1	Mehlich-3	Olsen	P recommendations
		Lbs P2O5/a		
Very low	<5	<7	<3	50-90
Low	6-12	8-14	4-7	30-50
Medium	13-25	15-28	8-11	10-30
High	26-40	29-50	12-20	0 (starter P if needed)
Very high	>40	>50	>20	0

*P sufficiency levels and recommendations represent general values and will vary greatly between region and crop.

Soil Sample Analysis

Exact measurements

• ppm

Classify the degree of nutrient sufficiency

- Very low
- Low
- Medium
- High
- Very high
- Recommendations
 - Based on broadcast rates

General guidelines from a land grant university in the mid-south

Soil test level	Expected			Mehl	Mehlich-3 Nutrient Concentrations				
	yield potential ⁽¹⁾	Ρ	K Most crops	Ca²	Mg²	SO4-S ²	Mn²	Cu²	Zn
		mg/kg or ppm							
V. low ³	<65%	<16	<61						<1.6
Low ³	65-85%	16-25	61-90	<400	<30	<10	<40	<1.0	1.6-3.0
Medium ³	85-95%	26-35	91-130						3.1-4.0
Optimum	100%	36-50	131-175						4.0-8.0
High	100%	>50	>175						>8.0

¹ Expected yield potential without fertilization.

² Recommendations are not provided for these nutrients. This listed values represent general guidelines for interpretation.
³ The soil test levels of "very low" and "medium" are considered "sub-optimum" levels.

Soil test ratings for immobile nutrients (based on 8-inch sample)*								
Category-immobile nutrients	Very low	low	medium	optimum	high	v. high		
Probability of yield response to applied fertilizer	Very likely	likely	Somewhat likely	unlikely	Not expect	ed		
Phosphorus								
Mehlich-3,ppm colorometric P	<6	6-14	15-24	25-35	36-50	>50		
Olsen bicarbonate, ppm P	<3	3-6	7-10	11-15	16-20	>20		
Mehlich-3, ppm ICP-P	<7	8-15	16-26	27-35	36-50	>50		
Bray-1, ppm P	<5	5-12	12-22	23-30	31-40	>40		
Potassium, ppm K	<60	60-120	121-160	161-220	221-280	>280		
Calcium, ppm Ca	<100	100-200	201-300	301-2500	>2500	>5000		
Magnesium, ppm Mg	<25	25-50	51-75	76-100	100-200	>200		
Zinc, ppm Zn	<.03	0.3-0.5	0.6-0.8	0.9-1.2	1.3-2.0	>2.0		
Iron, ppm Fe	<1.0	1.0-2.5	2.6-5.0	5.1-15.0	15-30	.30		
Copper, ppm Mn	<.01	0.1-0.2	0.3-0.4	0.5-0.8	0.9-1.5	>1.5		
Manganese, ppm Mn	<0.5	0.5-1.0	1.1-3.0	3.1-6.0	6.0-10	>10		
Boron, ppm B	<0.2	0.3-0.5	0.6-0.8	0.9-1.5	1.6-2.5	>2.5		

*These ranges are provided for general crop production situations. The ranges may be different for individual crops or specific soil situations. Source private lab.

Private lab

Soil test ratings for immobile nutrients (based on 8-inch sample)*

Category-mobile nutrients**	Very low	low	medium	optimum	high	v. high
Probability of yield response to applied fertilizer	Very likely	likely	Somewhat likely	unlikely	Not expe	cted
Nitrate-nitrogen, ppm NO3-N	<5	6-10	11-25	***	26-50	>50
Sulfur, ppm S	<2	2-5	6-10	* * *	11-15	>15

*These ranges are provided for general crop production situations. The ranges may be different for individual crops or specific soil situations.

**Ranges for mobile nutrients are based on survey results. They are not based on sufficiency or probability of yield response.

*** The optimum range for mobile nutrients depends on the projected yield goal and other factors which are very specific to the crop and field conditions.

P&K

- Yield response to P fertilization is not likely when the soil P is ≥36 ppm for row crops.
- Response to potassium fertilization are not likely when the soil tests above 175 ppm for row crops.

Buildup

- When the soil test is below the critical level (CL), it may be desirable to apply P or K at rates that increase soil test above the CL.
- Generally, applications of <u>10 to 30</u> lbs P₂O₅ /acre are required to increase soil test P level <u>1 ppm</u>, depending on soil properties influencing P fixation capacity.
- Similarly, <u>5 to 15</u> lbs K₂O/acre are needed to increase soil K level <u>1</u> ppm.
- From an economic standpoint this may take several years,
- Put the amount that you can afford each year.

Soil pH

Soil pH	General rating
<5.4	Strongly acid
5.4-5.7	Moderateley acid
5.8-6.4	Slightly acid
6.5-7.2	Nuetral
7.3-7.6	Slightly alkaline
7.7-7.9	Moderately alkaline
>7.9	Strongly alkaline

Is the measure of the acidity or alkalinity of the soil.

In general, soil pH values, P levels and K levels are highest in the cool, wet winter months and lowest during

the hot, dry summer months and the fall of the year.

Clay soils require more lime to neutralize than a sandy or silty texture.

Buffer pH

Second pH measurement for liming requirements.

CEC

- Ability of negatively charged soil particles to attract and retain positively charged ions.
- Also an indication of soil texture and organic matter.

CEC

CEC, meq/100g	Typical textue
<6	Very sandy soils
5-12	Sandy soils
10-25	Loamey soils
20-40	Clayey soils
35-50	Clay soils

Soil Texture: very fine sandy loam

Area: Alluvial

Irrigated: No

Soil Test Results

Element (Mehlich3)	Value	Cotton
pH (1:1 Water)	4.73	Low
Phosphorus, ppm	60.74	Very High
Potassium, ppm	118.11	Medium
Calcium, ppm	887.07	Very High
Magnesium, ppm	195.06	Very High
Sodium, ppm	16.60	Optimum
Sulfur, ppm	7.84	Low
Copper, ppm	0.99	High
Zinc, ppm	0.63	Low

Form

RECOMMENDATION

Crop cotton Units: lb/Acre

Nitrogen 60-90 <u>Phosphate</u> <u>Potash</u> <u>1</u> 0 40 0 Op

Expected pH/Acre with adding Lime					
1 Ton	<u>2 Ton</u>				
6.21	7.45				
Optimum	High				

Nitrogen

Soil Type	Irrigation or Dryland	Lbs/Acre
Clay	Irrigation	100-120
Clay	Dryland	90-120
Silt Loam	Irrigation	60-90
Silt Loam	Dryland	60-90

Phosporus

		V. Low	Low	Medium	High	V. High
Soil Type	Irr. or Dryland	<10 ppm	<20 ppm	<35 ppm	<60 ppm	>60 ppm
clay	irrigation	90	70	50	0	0
clay	dryland	80	60	40	0	0
Silt loam	irrigation	100	80	60	0	0
Silt loam	dryland	80	60	40	0	0

Potassium

		V. Low	Low	Medium	High	V. High
Soil Type	Irr. or Dryland	<141 ppm	<211 ppm	<317 ppm	<334 ppm	>334 ppm
clay	irrigation	100	80	60	0	0
clay	dryland	80	60	40	0	0

Potassium

		V. Low	Low	Medium	High	V. High
Soil Type	Irr. or Dryland	<70 ppm	<106 ppm	<141 ppm	<158 ppm	>158 ppm
Silt loam	irrigation	120	90	60	0	0
Silt loam	dryland	100	80	40	0	0

Other nutrients

Shi Maria	Sulfur	Zinc				
S-ppm	S-recommendations	Zn-ppm	Zn-recommendations			
<12	20 lbs per acre		10			
		1-2.25	5			
		>2.25	0			

Soil Test Results

PERMINANA, LPL / 1992

Element (Mehlich3)	Value	Corn (field)
pH (1:1 Water)	4.56	Low
Phosphorus, ppm	33.96	Medium
Potassium, ppm	105.75	Medium
Calcium, ppm	1,069.46	Very High
Magnesium, ppm	173.83	Very High
Sodium, ppm	50.89	Optimum
Sulfur, ppm	109.21	High
Copper, ppm	1.00	High
Zinc, ppm	1.59	Medium

RECOMMENDATION

					Expected pH / Acr	e with adding Lim	e
Crop	Form Units: lb/Acre	Nitrogen	Phosphate	Potash	1 Ton	<u>2 Ton</u>	
com (field)	com grain	140-180	60	60	5.93	7.20	
					Optimum	High	
com (field)	com silage	140-180	60	90	5.93	7.20	
					Optimum	High	

Soil Texture: very fine sandy loam

Area: Alluvial

Irrigated: No

Nitrogen

Soil Type	Irrigation or Dryland	Lbs/Acre
Clay	Irrigation	180-240
Clay	Dryland	140-180
Silt Loam	Irrigation	180-240
Silt Loam	Dryland	140-180

Phosphorus

		V. Low	Low	Medium	High	V. High
Soil Type	Irr. or Dryland	<10 ppm	<20 ppm	<35 ppm	<60 ppm	>60 ppm
clay	irrigation	120	90	60	0	0
clay	dryland	100	80	60	0	0
Silt loam	irrigation	120	90	60	0	0
Silt loam	dryland	100	80	60	0	0

Potassium

		V. Low	Low	Medium	High	V. High
Soil Type	Irr. or Dryland	<141 ppm	<211 ppm	<317 ppm	<334 ppm	>334 ppm
clay	irrigation	120	90	60	0	0
clay	dryland	100	80	60	0	0

Potassium

		V. Low	Low	Medium	High	V. High
Soil Type	Irr. or Dryland	<70 ppm	<106 ppm	<141 ppm	<158 ppm	>158 ppm
Silt loam	irrigation	120	90	60	0	0
Silt loam	dryland	100	80	60	0	0

Other nutrients

Shi Maria	Sulfur	Zinc				
S-ppm	S-recommendations	Zn-ppm	Zn-recommendations			
<12	20 lbs per acre		10			
		1-2.25	5			
		>2.25	0			

Plant Analysis

Plant Analysis

 Based on the scientific principle that healthy plants contain predictable concentrations of essential elements.

Interpretation methods used in plant analysis

- Critical values
- Sufficiency ranges
- Ratios
 - DRIS

Figure 2. Schematic of yield or growth in response to increasing nutrient concentration and interpretation.

Sampling procedures that enhance accuracy and effectiveness

- Seedlings
 - Entire plant (from about 1 inch above the soil)
- Larger plants
 - Most recent fully expanded or mature leaf
- Flowering or fruiting stage
 - Corn-ear leaf

Reasons for plant analysis

Problem solving

Good and bad plants

Monitoring

- Fine tuning nutrient applications
- <u>Taken the same time of day from the same area in the on each sampling</u> <u>date.</u>
- Corn
 - Just prior to sidedressing
 - Just prior to flowering

Environmental conditions

Caution

- Drought
- Saturated soils
- Insects
- Disease
- Compaction

Corn-Sampling Procedure

Stage of growth	Procedure
Seedling (<4 inches in height)	Whole plant-1 inch above the soil, 15-20 plants
Early growth (> 4 inches in height to tasseling)	Most recent mature leaf (MRML), 15-20 leaves
Tassel/Bloom	Earleaf, 15-20 leaves
Maturity	Earleaf, 15-20 leaves

Note: ship in paper containers

Corn-Critical values

Corn-sufficiency ranges for seedling(< 4")

	Macronutrients (%)						N	licronutr	ients (ppr	n)	
N	Р	К	Са	Mg	S	Fe	Mn	Zn	Cu	В	Мо
4-5	.46	3-4	.38	.26	.1850	40-250	25-160	20-60	6-20	5-25	.1-2.0

The N:S ratio should be between 10 and 15 at all growth stages for optimum yields. Sulfur is limiting at N:S ratios greater than or equal to 18.

Corn-sufficiency ranges for seedling(> 4" to tasseling)

Macronutrients (%)					Micron	itrients (p	opm)				
Ν	Р	К	Са	Mg	S	Fe	Mn	Zn	Cu	В	Мо
3-4	.35	2-3	.2580	.1560	.1540	30-250	20-150	20-70	5-25	5-25	.1-2.0

The N:S ratio should be between 10 and 15 at all growth stages for optimum yields. Sulfur is limiting at N:S ratios greater than or equal to 18.

Corn-sufficiency ranges for tassel/bloom

Macronutrients (%)					Micronutrients (ppm)						
Ν	Ρ	К	Са	Mg	S	Fe Mn Zn Cu B			В	Мо	
2.8-4.0	.2550	1.8-3.0	.2580	.1560	.1560	30-250	15-150	20-70	5-25	5-25	.1-2.0

The N:S ratio should be between 10 and 15 at all growth stages for optimum yields. Sulfur is limiting at N:S ratios greater than or equal to 18.

Corn-sufficiency ranges (maturity)

Macronutrients (%)					Micron	Micronutrients (ppm)					
Ν	Ρ	К	Са	Mg	S	Fe	Mn	Zn	Cu	В	Мо
2.5-3.5	.2540	1.6-2.5	.28	.1250	.1240	30-250	15-150	16-50	4-20	3-20	.1-2.0

The N:S ratio should be between 10 and 15 at all growth stages for optimum yields. Sulfur is limiting at N:S ratios greater than or equal to 18.

Grain Sorghum-sampling procedure

Stage of growth	Procedure
Seedling (< 4 cm tall)	Sample whole above ground portion of plant.
Vegetative or prior to heading	Sample entire fully developed leaf below the whorl
Flower or at heading	Sample second leaf from the top of the plant
Grain filling	Sample second leaf from the top of the plant.

Grain Sorghum-sufficiency ranges (seedling)

	Macronutrients (%)						Micr	onutrients	(ppm)	
N	Р	К	Са	Mg	S	Fe	Mn	Zn	Cu	В
3.9-?	.25	2.0-?	.36	.256	.24+	75-400	13-200	12-150	4-20	3-30

Grain Sorghum-sufficiency ranges (Vegetative)

	Macronutrients (%)						Micr	onutrients	(ppm)	
N	Ρ	К	Са	Mg	S	Fe	Mn	Zn	Cu	В
3-4	.24	2.0-?	.36	.25	?	75-200	8-100	12-100	2-15	1-10

Grain Sorghum-sufficiency ranges (flowering)

	Macronutrients (%)						Micro	onutrients	(ppm)	
N	Р	К	Са	Mg	S	Fe	Mn	Zn	Cu	В
2.5-4.0	.2035	1.4-?	.36	.25	?	65-100	8-100	12-100	2-7	1-10

Grain Sorghum-sufficiency ranges (grain filling)

Macronutrients (%)					Micronutrients (ppm)					
N	Р	К	Са	Mg	S	Fe	Mn	Zn	Cu	В
2.4-4.0	.23	1.4-?	.36	.15	?	40-80	8-100	12-100	1-5	1-6

Soybeans-critical values

- Critical values for the R2 stage are 0.30% for P, 1.50% for K, 17 ppm for MN, and 21 ppm for Zn.
- Sampling procedures
 - The most recently mature leaf blades are collected.

Soybeans-sufficiency ranges (early growth)

		Macronut	rients (%)		
Ν	Р	К	Са	Mg	S
3.5-5.5	.3060	1.7-2.5	1.1-2.2	.3060	?
					Friday States

Soybeans-sufficiency ranges (flowering)

		Macronut	rients (%)		Micronutrients (ppm)					
N	Р	К	Са	Mg	S	Fe	Mn	Zn	Cu	В
3.25-5.0	.3060	1.5-2.25	.8-1.4	.2570	.2560	25-300	17-100	21-80	4-30	20-60
	i staff				the state					
				all a most	the shi					

Cotton

Sufficiency levels and critical values

 Sufficiency ranges for cotton have often been used based upon observations and ranges of analyses of plant tissue from healthy or normal cotton crops. For this reason, ranges may be broad and too inclusive. Therefore, use of a sufficiency range for cotton and the implied critical concentration (lower end of sufficiency range) of a nutrient for deficiencies or toxicities are not absolute.

Cotton

Sampling procedures

- Petiole analysis
 - Sample petioles from the most recently matured leaf on the vegetative stem at intervals beginning the week before first bloom and continuing for 7 or 8 weeks after bloom. Samples should be taken at weekly intervals and compared for the results to be meaningful. Interpret petiole analysis for NO3-N, total P, and total K only. Nitrate analysis is the most meaningful and the primary reason for sampling.

Leaf blade at early bloom

 Sample the uppermost, mature cotton leaf blade on the vegetative stem. Discard the petiole. This is usually the 3rd to 5th leaf from the terminal. Sample during the period of one week before to one week after first bloom.

Cotton-petiole-sufficiency ranges (Arkansas)

Time of sampling	Nitrate nitrogen (ppm)	Phosphorus (ppm)
Week of bloom	10,000-35,000	>800
Bloom + 1 week	9,000-30,000	*
Bloom + 2 week	7,000-25,000	*
Bloom + 3 week	5,000-20,000	*
Bloom + 4 week	3,000-13,000	*
Bloom + 5 week	2,000-8,000	
Bloom + 6 week	1,000-5,000	
Bloom + 7 week	0-5,000	
Bloom + 8 week	0-5,000	

*A decrease in P concentration of more than 300 ppm from the previous week usually indicates moisture stress.

Cotton-youngest mature leaf blade

Sufficiency ranges-Macronutrients (%)									
N P K Ca Mg S									
Early bloom	3.0-4.5	.265	1.5-3.0	2.0-3.5	.39	.2580			
Late bloom/maturity	3.0-4.5	.156	.75-2.5	2.0-4.0	.39	.39			

Cotton-youngest mature leaf blade

Sufficiency ranges-Micronutrients (ppm)									
Fe Mn Zn Cu B									
Early bloom	50-250	25-350	20-200	5-25	20-80				
Late bloom/maturity	50-300	10-400	50-300		15-200				

Nutrient Corrective Measures

Nutrient	Pounds per acre	Method
Ν	30-50	Side dress or top dress
Ρ	30-40	Incorporate during early growth
К	30-50	Incorporate during early growth
Mg	1-2	foliar
Са	1-2	foliar
S	10-20	Side dress or top dress
В	.25	foliar
Zn	.5-1	foliar
Mn	1-2	foliar
Fe	1-2	foliar
Cu	.5-1	foliar

Corn stalk nitrate sampling procedure

- Collect in three week period beginning at or just prior to black layer.
- 15 stalks per sample
- Cut an 8-inch sample of stalk beginning 6 inches above the ground and terminating at 14 inches above the ground.
- Place the samples in a paper sack, rather than plastic, to avoid mold growth
- Immediately send samples to the laboratory for nitrate analysis.

Corn stalk testing to evaluate nitrogen management-interpretation of corn stalk nitrate analysis

Plant N Status	Stalk nitrate (ppm as NO3)	Interpretation
Low	0-250	High probability that nitrogen was deficient. Visual signs of N deficiency are usually present.
Marginal	250-700	N availability was close to "optimal," but it was too close to economic penalties for good N management.
Optimal	700-2000	High probability that yields were not limited by N availability. Visual signs of N deficiency on lower leaves are often observed in this range.
Excess	>2000	High probability that N was greater than needed for maximum yields.

Thank You

Questions