Cover Crop Research at Louisiana State University

Josh Copes

Agronomist

Lisa Fultz, James Hendrix, Syam Dodla, Rasel Parvej, Donnie Miller, and Daniel Stephenson

Cover Crops – Need a Game Plan

- Cover crops, just like any other crop, must be managed so they can accomplish your reasons for planting them.
- What goal you would like to accomplish by using a cover crop?
 - Frosion control
 - Nutrient cycling
 - Increase organic matter
 - Biomass production for weed suppression
- Once the goal is identified then you can implement a game plan to manage the cover crop accordingly.

Some Concerns with Cover Crops

- Terminating cover crops and winter vegetation in the spring.
 - Producers have had issues terminating some cover crops especially wheat.
 - Glyphosate resistance Italian ryegrass poses another concern.
- When can I terminate cover crops and not reduce yields?
 - Physical competition from dead cover crop.
 - Nutrient availability. Early season P issues??
 - Also, soils could remain a little cooler and retain surface moisture longer than no cover crop fields, all leading to potential early season P deficiency.
- Are some cover crops better than others? Can some cover crops reduce yields?

Use of Fall Applied Residual Herbicides in Cover Crops

- 4 cover crops were evaluated:
 - Cereal rye (120 lb/a)
 - Tillage Radish (8 lb/a)
 - Crimson Clover (20 lb/a)
 - Austrian Winter Pea (30 lb/a)
- Herbicides evaluated:
 - Zidua @ 2 oz/a
 - Zidua @ 4 oz/a
- Herbicide Application Timing:
 - 1 Week After Emergence
 - 3 Week After Emergence
- Cover crops planted October 25, 2017 and October 30, 2018

NERS 2018: Cover Crop Injury

NERS 2018: Cover Crop Injury

NERS 2019: Cover Crop Injury

NERS 2019: Cover Crop Injury

NERS 2019 Weed Ground Cover

NERS 2018 Weed Ground Cover

Summary for Cover Crop Injury

2018

- Injury was minimal < 10% for all cover crops.
 - Winter pea was not injured by Zidua.
 - Tillage radish and crimson clover most sensitive to Zidua.
 - 4 oz/a rate tended to be more injurious.
- Injury was minimal at Dean Lee location in 2018 as well.

2019 (fall and winter extremely wet)

- Greater injury than in 2018.
- All cover crops were injured significantly. Injury ranged from 14-29%
- 4 oz/a rate tended to be more injurious.
- Injury was <u>similar between</u> application timings. Except for tillage radish.

Overall Summary

- If winter weeds are a concern, applying Zidua/chloracetamide applied in the fall may be an option.
- Cereal rye was most competitive with weeds followed by tillage radish.
- Cover crop injury is likely in years with extreme wet weather.
 - Tillage radish was the most sensitive to injury.
- Henbit (≤ 56%) and other broadleaf weed control was not great.
- Bluegrass control was excellent.
- Plant the cover crop as early as possible. Plant into a clean seed bed. Apply Zidua/chloractamide herbicide once the cover crop is well established 1 3 week after emergence.

Cover Crop Effects on Crop Production

Cover Crop Effects on Crop Production

- Evaluate 8 cover crops in both conventional till and no-till systems in a corn soybean rotation.
 - Cereal rye
 - Black oats
 - Hairy vetch
 - Cereal rye + hairy vetch 70/30 ratio.
 - 70/30 ratio
 - 30/70 ratio
 - Black oats + hairy vetch 70/30 ratio.
 - 70/30 ratio
 - 30/70 ratio
- Examine long-term benefits of cover crops.

NERS 2018: Winter Weed Ground Cover

NERS 2018: Crop Plant Stand

NERS 2018: Crop Plant Stand

NERS 2019: Crop Plant Stand

Crop Plant Stand 2019

NERS 2018: Crop Yield

NERS 2019: Crop Yield

NERS 2019: Crop Yield

Summary Plant Stand

2018

- Most cover crops negatively affected main crop plant stand, but yield was not affected.
- Cotton plant stand was more sensitive to cover crops than corn plant stand.
- Soybean-Cotton rotation yield was significantly less than Corn-Cotton and Soybean-Corn.

2019

- Cover crops did not affect main plant crop stand nor crop yield.
- Soybean plant stand was more sensitive than corn to establishment.
- Soybean-Corn rotation yielded significantly greater than Corn-Cotton and Soybean-Corn.

Summary Yield

2018

- Cover crops did not affect crop yield.
- Soybean-Cotton rotation yield was significantly less than Corn-Cotton and Soybean-Corn.

2019

- Cover crops did not affect crop yield.
- Soybean-Corn rotation yielded significantly greater than Corn-Cotton and Soybean-Corn.

Cover Crop Termination Timing Effects on Crop Yield

- Examine cover crop termination date in a no-till and conventional tillage system.
- Crop rotation of corn and soybean
- Cover crop
 - Black oats + hairy vetch
 - No cover crop
- Termination of cover crops:
 - 2, 4, and 6 wk prior to planting and at planting
- Corn: 3/24/18 & 3/22/19
- Soybean: 4/19/18 & 4/14/19
- Cotton: 5/14/18 & 4/30/19

Termination Timing Affect on Corn Yield 2018

Contrast for Corn 2018

Contrast	Difference Between	Pr > t
Conventional Tillage to No-Tillage	28	<.0001
No Cover Crop to Cover Crop	-2.03	0.7025
Conventional Tillage No Cover Crop to Conventional Tillage Cover Crop	-0.91	0.9037
No-Tillage No Cover Crop to No-Tillage Cover Crop	-3.15	0.6751
Conventional Tillage No Cover Crop to No-Tillage Cover Crop	26.25	0.0026

Termination Timing Affect on Corn Yield 2019

Contrasts for Corn 2019

Contrast	Difference Between	Pr > t
Conventional Tillage to No-Tillage	0.69	0.9042
No Cover Crop to Cover Crop	5.99	0.3835
Conventional Tillage No Cover Crop to Conventional Tillage Cover Crop	9.81	0.3176
No-Tillage No Cover Crop to No-Tillage Cover Crop	2.17	0.8203
Conventional Tillage No Cover Crop to No-Tillage Cover Crop	8.97	0.3539

Termination Timing Affect on Cotton Yield 2018

Contrasts for Cotton 2018

Contrast	Difference Between	Pr > t
Conventional Tillage to No-Tillage	150.41	0.0136
No Cover Crop to Cover Crop	-58.7	0.3779
Conventional Tillage No Cover Crop to Conventional Tillage Cover Crop	-100.16	0.2544
No-Tillage No Cover Crop to No-Tillage Cover Crop	-17.24	0.8622
Conventional Tillage No Cover Crop to No-Tillage Cover Crop	66.83	0.4347

Termination Timing Affect on Cotton Yield 2019

Contrast for Cotton 2019

Contrast	Difference Between	Pr > t
Conventional Tillage to No-Tillage	-68.36	0.1859
No Cover Crop to Cover Crop	-134.88	0.0461
Conventional Tillage No Cover Crop to Conventional Tillage Cover Crop	-53.31	0.5227
No-Tillage No Cover Crop to No-Tillage Cover Crop	-216.45	0.0343
Conventional Tillage No Cover Crop to No-Tillage Cover Crop	-154.30	0.0676

Termination Timing Affect on Soybean Yield 2018 & 2019

Contrast for Soybean 2018 & 2019

Contrast	Difference Between	Pr > t
Conventional Tillage to No-Tillage	10.56	<.0001
No Cover Crop to Cover Crop	2.55	0.2260
Conventional Tillage No Cover Crop to Conventional Tillage Cover Crop	2.81	0.3162
No-Tillage No Cover Crop to No-Tillage Cover Crop	2.28	0.4196
Conventional Tillage No Cover Crop to No-Tillage Cover Crop	13.27	<.0001

Summary Corn

Corn 2018

- Termination timing did not affect yield.
- Conventional tillage > No-tillage. (Phosphorus)

Corn 2019

- Termination timing did not affect yield but there was a trend for higher yields with earlier termination timings.
- Tillage did not affect yield.

Summary Cotton

Cotton 2018

- No trend for termination timing affect.
- Conventional tillage > No-tillage.
- Yield advantage of 150 lb lint/a for conventional tillage.
- Yield advantage of 59 lb lint/a for cover crop.

Cotton 2019

- No trend for termination timing affect.
- Tillage system did not affect yield.
- Yield advantage of 135 lb lint/a for cover crop.
- No-tillage cover crop 154 lb lint/a yield advantage over Conventional tillage NO cover crop

Summary

Soybean 2018 & 2019

- Termination timing did not affect yield but there was a trend for higher yields with earlier termination timings.
- Conventional tillage > No-tillage; 11 bu/a yield advantage.
- Conventional tillage with NO cover crop 13 bu/a yield advantage.

EXPERIMENTAL DESIGN - 1

Split-plot

and

Cereal rye

Winter pea

Berseem clover

Fallow

Hairy vetch

- Main plot: cover crops
 - Legumes
 - Non-legumes
- **Sub plot: nitrogen rates**
 - 0, 90,179, 269 kg ha⁻¹

N ₂	N ₄	N ₁	N ₃
N ₃	Nı	N ₄	N ₂
N ₄	N ₃	N ₁	N ₂
N ₁	N ₂	N ₃	N ₄

- **Soil sampling** (Total 512 samples)
 - Spring 2017 (128 samples)
 - Fall 2017 (128 samples)
 - Spring 2018 (128 samples)
 - Fall 2018 (128 samples)

RESULTS - CORN GRAIN YIELD

RESULTS - SOIL NITRATE-N

Cover Crop Biomass Degradation

EXPERIMENTAL DESIGN - 2

Split plot in RCBD

Site: Dean Lee Research Station

Block 3 Block 4 401 402 403 404 269 269 269 269 301 302 303 304 179 Block 2 201 202 203 204 90 102 103 104

Mixed cover crop treatments

Trt 1 – Fallow control

Trt 2 – Black oats + Austrian winter pea

Trt 3 - Winter wheat + Berseem clover

Trt 4 – Cereal rye + Crimson clover + Radish

• 192 soil and biomass samples

Site: Macon Ridge Research Station

	Block 3							Block 4	
	01 69	402 269	403 269	404 269	405 269	406 269	407 269	408 269	
	.79	302 179	303 179	304 179	305 179	306 179	307 179	308 179	Block 2
	01	202 90	203 90	204 90	205 90	206 90	207 90	208 90	DIUCK Z
0	.01	102 0	103 0	104 0	105 0	106 0	107 0	108 0	

Mixed cover crop treatments

Sunn hemp + Cereal rye + Hairy vetch
Cereal rye + Black oats
Fallow
Black oats + Wheat + Hairy vetch + Radish
Black oats + Crimson clover +Radish
Cow pea + Wheat + Crimson clover
Wheat
Sunn Hemp + Crimson clover + Hairy vetch + Radish

• 384 soil and biomass samples

COVER CROP DEGRADATION

The impact of mixed winter cover crops and nitrogen addition on biomass production, degradation and nitrogen cycling

Percent biomass remaining over times

- At week 8 about 50 % of the biomass still remained in all mixed cover crop treatments.
- · Fallow had the highest % biomass remaining.

Soil Inorganic N

- Overall, soil NH₄⁺-N and NO₃⁻-N availability increased at week 6 after cover crop termination.
- Soil NH₄⁺-N content fluctuated over time while soil NO₃⁻-N showed constantly pattern for all treatments.

2016 CIG Project Sites

Final Thoughts

- Cover crops can provide benefits to cropping systems and should be managed for their specific goal.
- If winter weeds are a concern, applying Zidua/chloracetamide in the fall may be an option.
- Cereal cover crops are very competitive with winter weeds.
- Plant the cover crop as early as possible. Plant into a clean seed bed. Apply Zidua/chloractamide herbicide once the cover crop is well established 1-3 week after emergence.
- Cover crops can affect main crop plant population.
 - Cotton and soybean population more affected than corn.

Final Thoughts

- Tillage system and crop rotation sequence impacted main crop plant population and crop yield.
- In one study, cover crops did not affect main crop yield.
- In another study, a cover crop positively affected cotton yield.
- For soybean and corn (one year) there was a yield advantage of conventional tillage and NO cover crop over no-tillage and cover crop.
- Termination timing did not affect corn and soybean yields.
- There was no clear trend of termination timing affect on cotton yield.

Final Thoughts

- Legume cover crops are supplying substaintial amounts of N to our crops.
 - Yield was maximized at 80 lb N per acre.
 - Yield was maximized at 160 lb N per acre for no cover and non-legumes.
- Cover crops are scavenging soil residual nitrogen.
- Ammonium- and Nitrate-N increased by 6 wks after cover crop termination.

