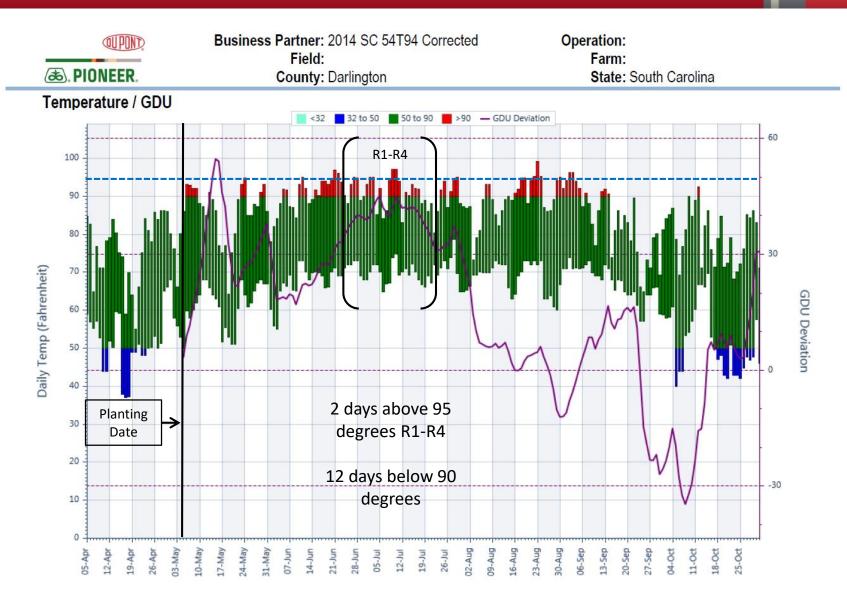


Identifying Soybean Yield Limiting Factors

Daniel H. Poston, Ph. D

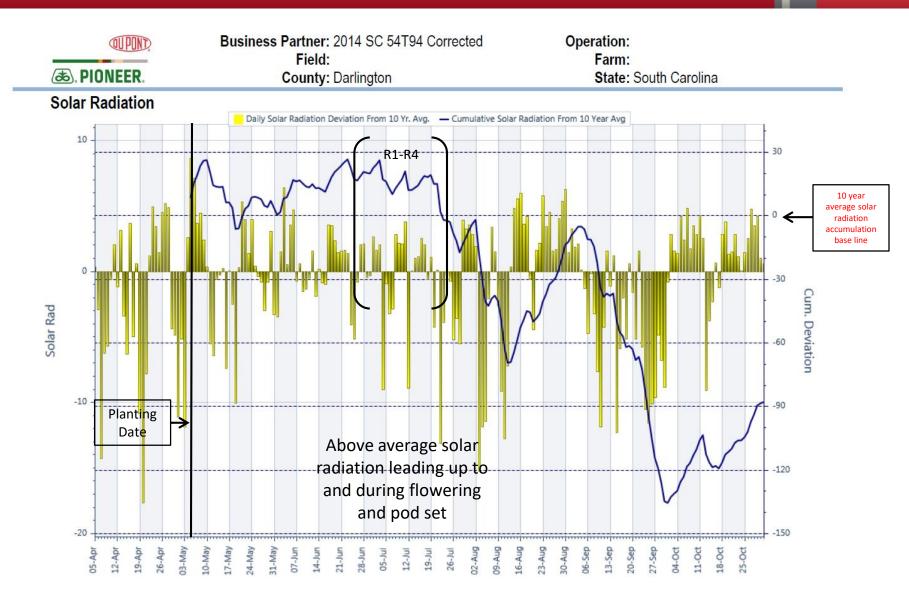
Factors That Influence Soybean Yield

- Light (Temperature)
- Water (Drainage)
- Nutrition
- Pest management



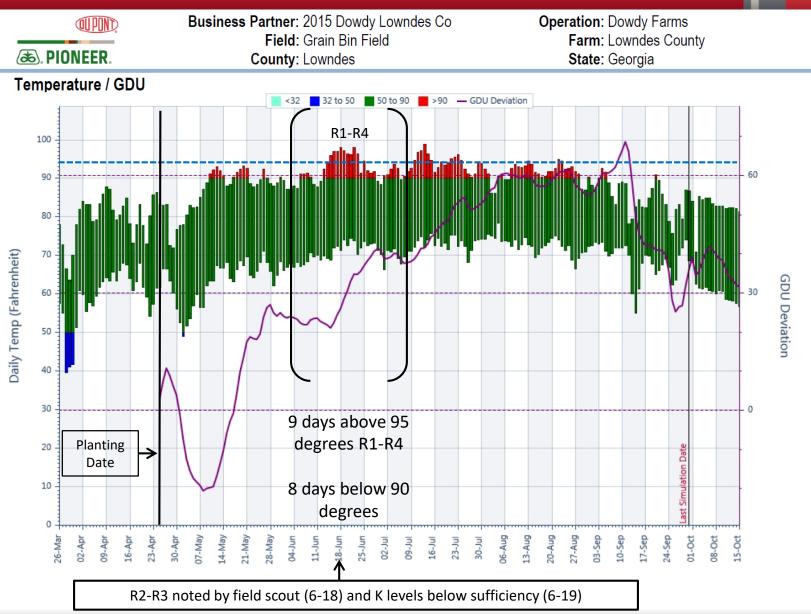
Combined Effect of Light, Water, and Nutrition

2014 Field Environment Profile – Darlington County, SC


QUPOND.

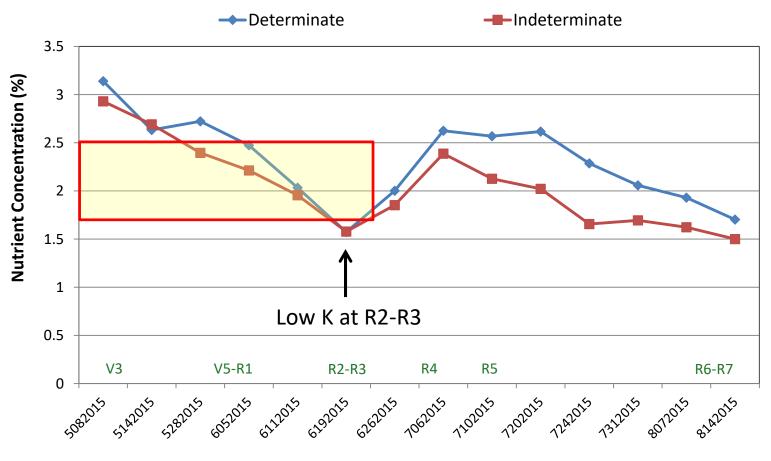
2014 Field Environment Profile – Darlington County, SC

QU POND.



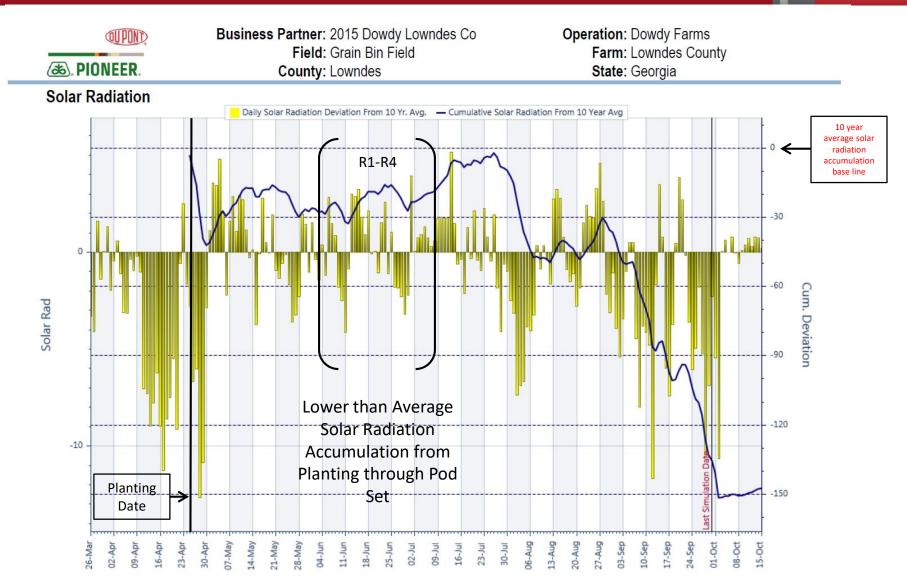
Don Gause 109.1 Bu/A Scranton, SC 2014

- Well Irrigated
- Fertilized for Corn
- Cool Growing
 Season
- Lots of Sunlight



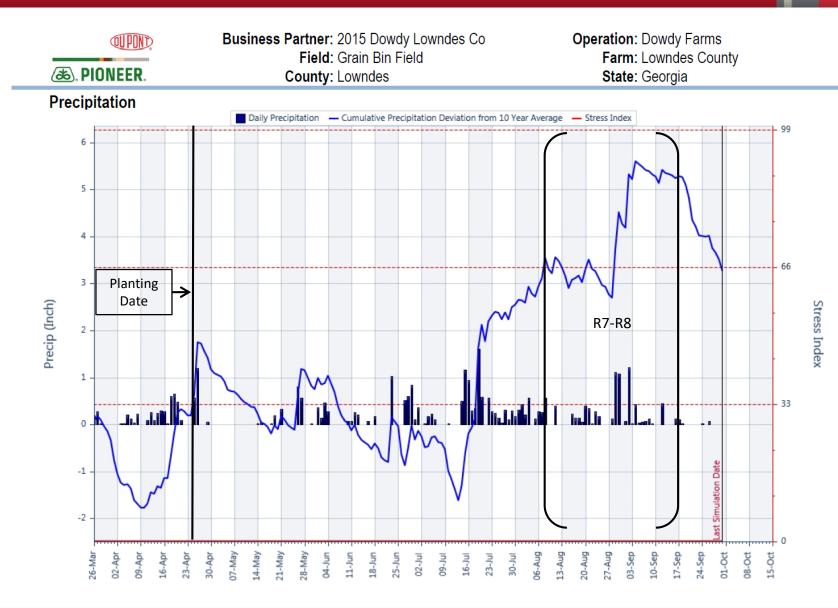
2015 Field Environment Profile – Lowndes County GA

Potassium Concentration Over Time



Date

2015 Field Environment Profile – Lowndes County GA

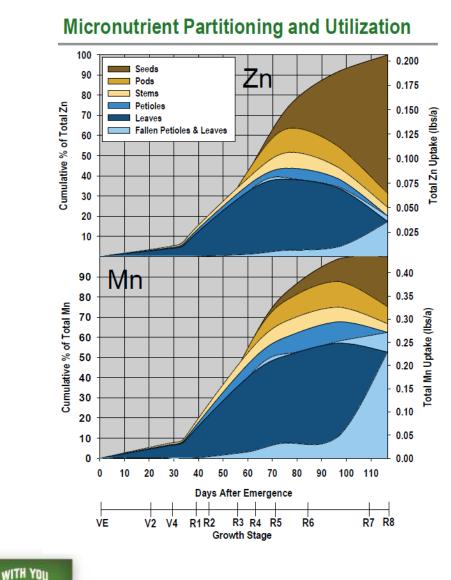


MPN. . PIONEER.

2015 Field Environment Profile – Lowndes County GA

وروب المحالي (Barris Constraint) (Barris Cons

Seed Quality - 2015



Plant Nutrition: Asking the Right Questions

- How much of each nutrient do we really need to produce 100+ Bu/A soybeans?
- What is the right balance of all nutrients?
- How do I meet peak in-season and late-season nutrient demand?
- Where must my nutrients reside in the soil profile at various times during the growing season to meet nutrient demand?
- Can my soils hold the nutrient load required to produce these yield levels?

FROM THE WORD

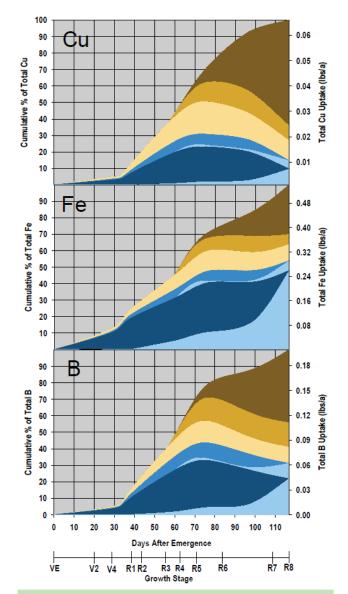
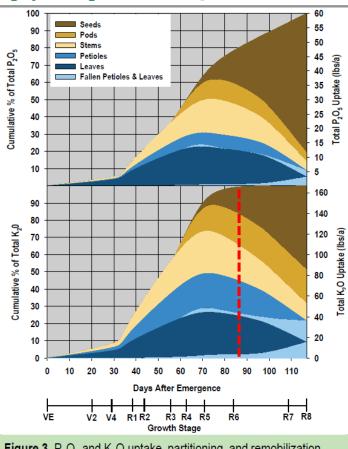
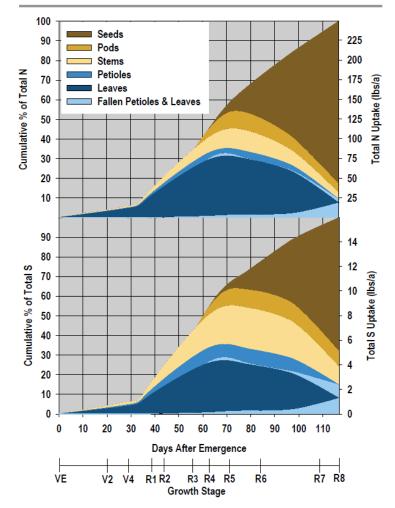



Figure 3. Micronutrient uptake, partitioning, and remobilization through the growing season for a 66 bu/acre soybean crop.



P₂O₅ and K₂O Partitioning and Utilization

Figure 3. P_2O_5 and K_2O uptake, partitioning, and remobilization through the growing season for a 66 bu/acre soybean crop.

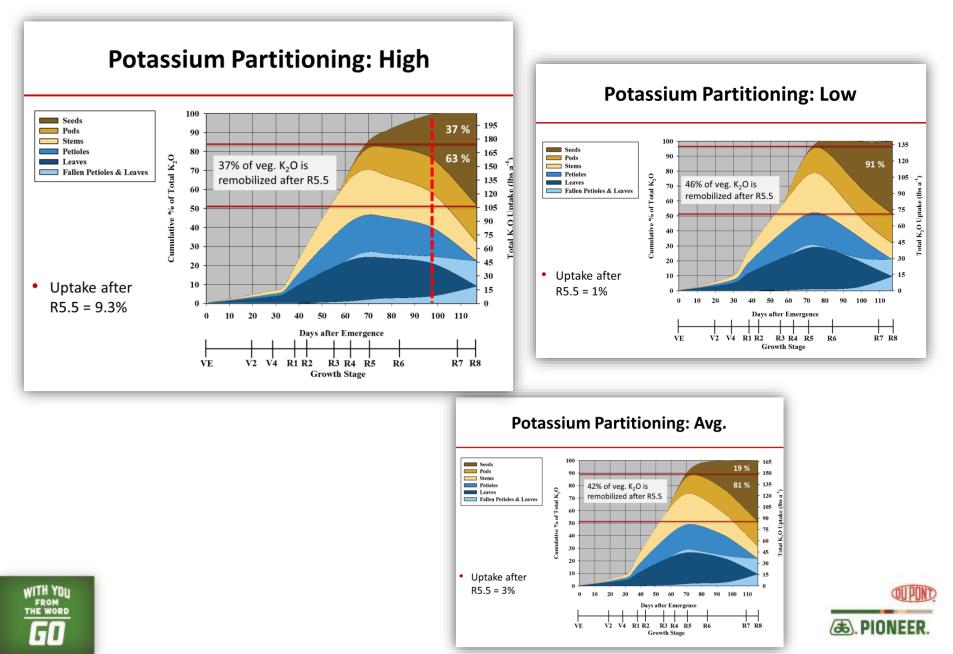
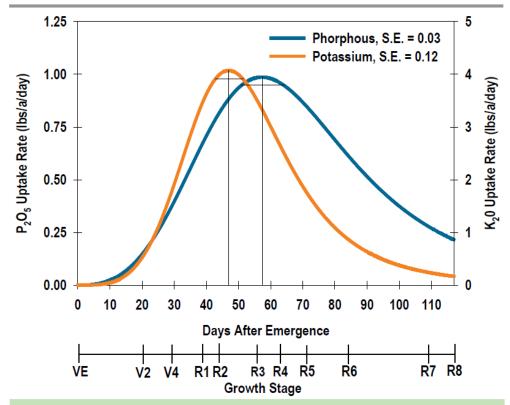


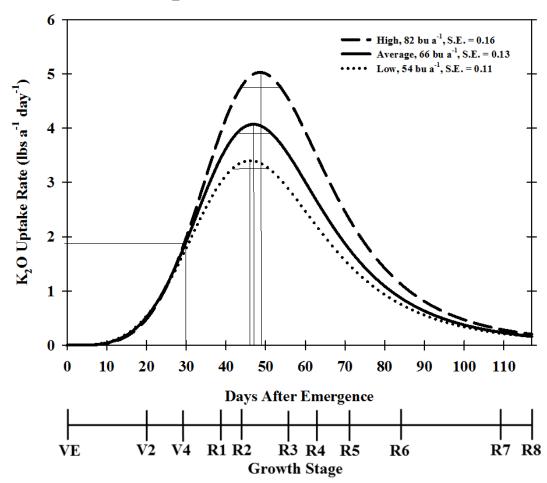
Figure 3. N and S uptake, partitioning, and remobilization through the growing season for a 66 bu/acre soybean crop.

High Yield Soybean Nutrient Uptake


R. Flannery, 101 Bu/A Soybeans

Soybean		Nutrie	nt Uptake p	er Day	
Stage	Days	Ν	P_2O_5	K ₂ O	
			- Ib/a/day -		
3rd trifoliate	40	0.75	0.25	0.68	
6th trifoliate	11	1.45	0.55	2.72	
Full Bloom	16	7.81	1.75	5.75	≈ 90 lbs/A
Early pod	15	9.13	2.27	9.6	≈150 lbs/A
Soft seed	21	11.43	2.76	2.43	
Maturity	16	-3.38	-1.25	- 2.25	
	Total	548	136	344]

P₂O₅ and K₂O Uptake Rate


Figure 2. P_2O_5 and K_2O uptake rate through the growing season for a 66 bu/acre soybean crop. Duration of peak uptake period is represented by a horizontal black line.

DISCUSSION

- Peak K uptake rate = 4 Lbs/A per day for 66 Bu/A
- Flannery 9.6 Lbs per acre per day for 101 Bu/A
- What for 150 Bu/A?
 - 9.1 to 14.3 Lbs/A per day depending on data set.
- High demand could last for 30 days.
- How many Lbs needed in soil?
- How many Lbs supplemented in season?
- What sources?
- How do you apply?

K₂0 Uptake by Yield Level

DISCUSSION

- Peak K uptake rate = 4 Lbs/A per day for 66 Bu/A
- Flannery 9.6 Lbs per acre per day for 101 Bu/A
- What for 150 Bu/A?
 - 9.1 to 14.3 Lbs/A per day depending on data set.
- High demand could last for 30 days.
- How many Lbs needed in soil?
- How many Lbs supplemented in season?
- What sources?
- How do you apply?

Total P2O5 and K2O Uptake

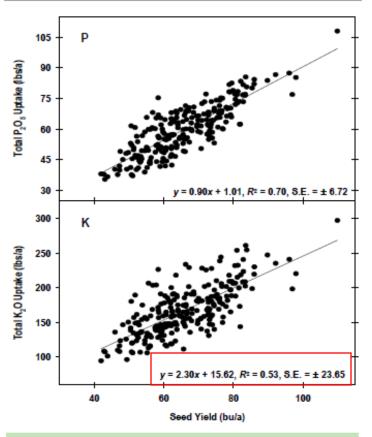


Figure 1. Total whole plant P_2O_5 and K_2O uptake at growth stage R8 (full maturity) across all environments and varieties.

Where do you Start?

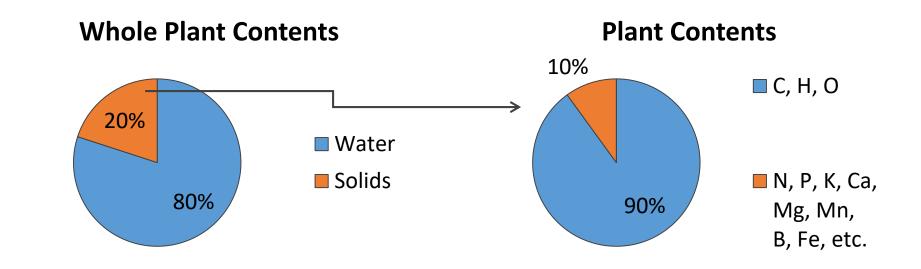
- Suggests 360 lbs/A K20 uptake for 150 bu/A (10,050 kg/ha) beans assuming linear relationship.
- Roots explore approximately 3% of soil.
- How many pounds of extractable K in top 12 inches of soil based on 6 inch soil sample to facilitate needed uptake?
- Perhaps 2X or 600 to 700 lbs/A or 300 to 350 ppm for sandy soils?
- How about peak demand periods? Do we supplement? How much?
- Perhaps 100 to 200 extra pounds to be available at peak demand?

Plant Tissue Analysis

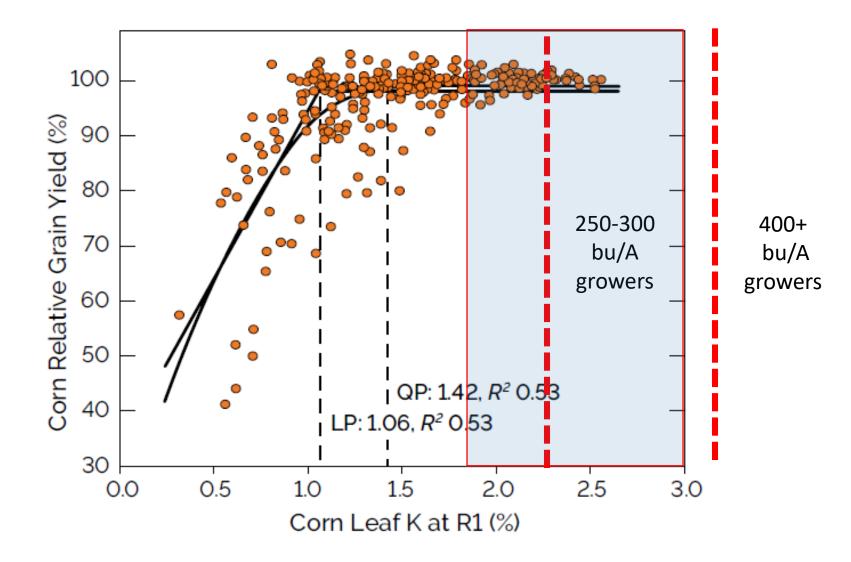
- Plant tissue analysis is often used to <u>diagnose nutrient deficiencies</u> after visual symptoms appear.
- Plant tissue analysis is <u>rarely used to proactively</u> track nutrient levels throughout the growing season.
- Using plant tissue analyses in strategic fields on pre-planned intervals that coincide with critical growth stages may <u>allow time to take corrective</u> <u>measures</u> before deficiencies significantly reduce yield.
- Plant tissue analysis can also be used to compare nutrient levels in highly productive fields to those from problem fields.
- Objective was to collect plant tissue samples from highly managed soybean fields in an effort to identify critical nutrient levels required to produce soybean yields in excess of 100 Bu/A.

Assessing Nutritional Limitations

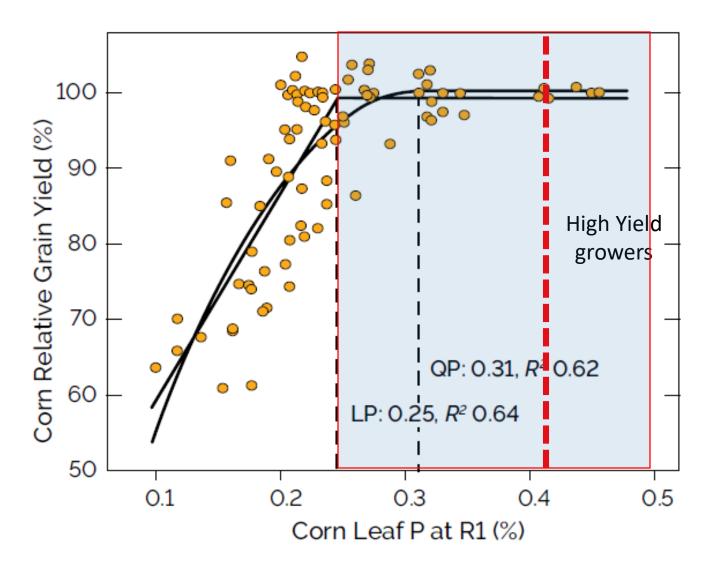
Field id: High Yield Field Crop : Soybeans* Sample Id : Y2 Growth Stage : Prior to pod set (R2-R3) Plant Part: Recent fully														
ample Id : Y	2			Gr	owth Stage	e : Prior to	pod set (F	R2-R3)	R3) Plant Part: Recent fully developed leaf (25+)					
	Nitrogen %	Sulfur %	Phosphorus %	Potassium %	Magnesium %	Calcium %	Sodium %	Boron ppm	Zinc ppm	Manganese ppm	Iron ppm	Copper ppm	Aluminum ppm	
Analysis	4.42	0.28	0.36	2.27	0.32	1.07	0.02	54	52	56	105	15	29	
Normal	4.10	0.21	0.26	1.70	0.25	0.50	0.01	20	21	30	50	10	0	
Range	5.50	0.49	0.54	5.50	1.00	2.00	0.03	60	50	100	350	30	300	
					• • •					· · ·		·	•	
	N/S	N/K	P/S	P/Zn	K/Mg	K/Mn	Ca/B	Fe/Mn	Ca/K	Ca/Mg		_		^
Actual Ratio	15.8	1.9	1.3	69.2	7.1	405.4	198.1	1.9	0.5	3.3		· · · /	′4 Bu/	A
Actual Ratio	10.0	1.5	1.0											
Expected Ratio	13.7	1.3	1.1	112.7	5.8	553.8	312.5	3.1	0.3	2.0				
					5.8			3.1	0.3	2.0			Yield	
					5.8			3.1	0.3	2.0				
Expected Ratio					5.8			3.1	0.3	2.0				
Expected Ratio					5.8			3.1	0.3	2.0				
Expected Ratio Very High High					5.8			3.1	0.3	2.0				
Expected Ratio					5.8			3.1	0.3	2.0				

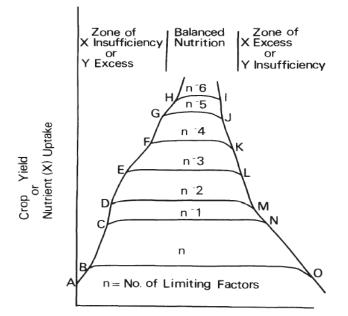


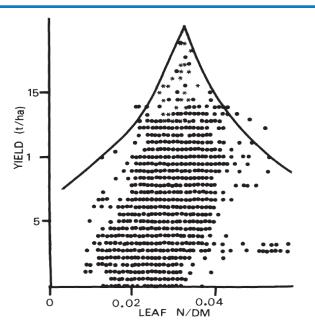
Question: Why am I only producing 70-75 Bu/A soybeans when all of my tissue samples are showing sufficient?



What is in Plant Material?

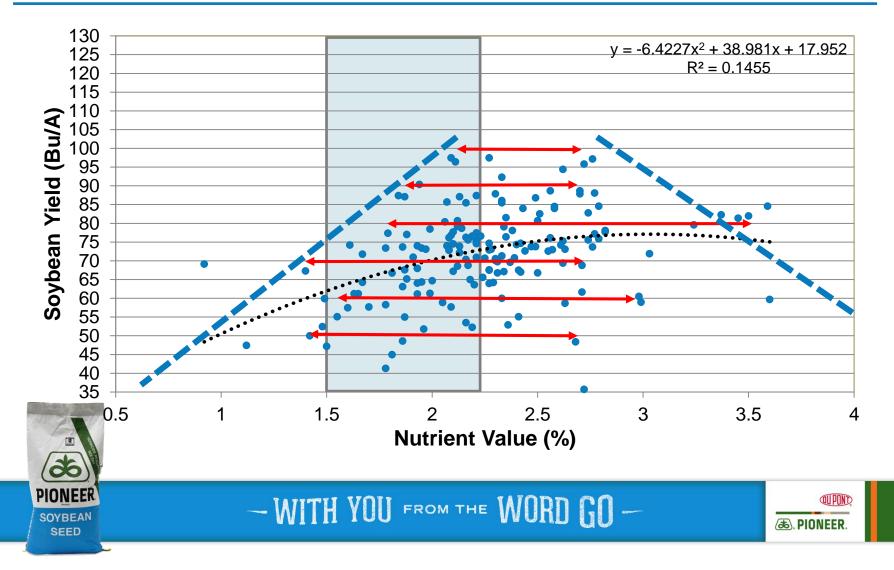

Plant Tissue Analysis – Potassium (corn)

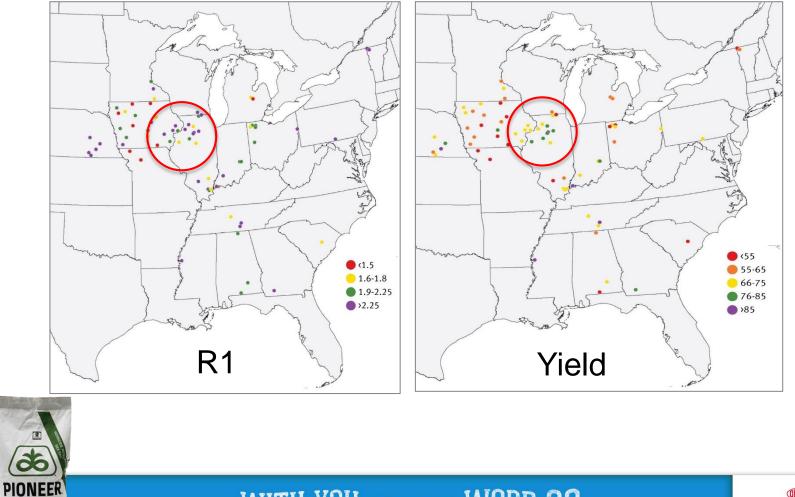

Plant Tissue Analysis – Phosphorus (corn)



Assessing Nutritional Limitations

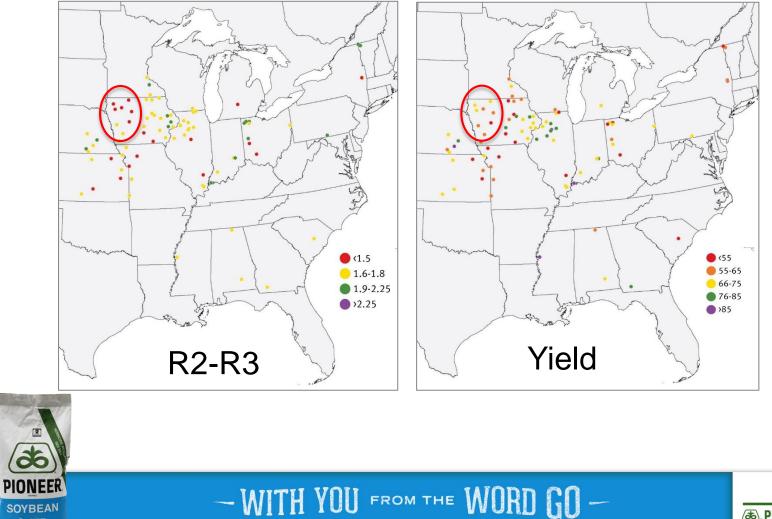
Soil Nutrient (X) Level or Tissue Nutrient Ratio (X/Y)


Figure 3. Diagrammatic representation of crop response to a number of limiting factors. From Sumner and Farina (1986).


Figure 4. Maize yield versus leaf N/DM (percent per 100) including over 8000 data points collected worldwide. Included is a boundary line confining the data. From Walworth *et al.* (1986a).

% Leaf Potassium – Early Bloom (R1) 2017-18

Soybean Tissue Potassium Levels – R1


- WITH YOU FROM THE WORD GO -

SOYBEAN

SEED

(IDD): (a). PIONEER.

Soybean Tissue Potassium Levels – R2-R3

SEED

B. PIONEER.

OUPON

Table 1. Percent of Tissue Samples Testing Below Sufficiency at 3 growth stages in	
2017and 2018.*	

Nutrient	-	oom (R1) 184		et (R2-R3) 134	Pod Filling (R4-R6) n = 116		
Nitrogen (N)	2	38	4	5	7	18	
Sulfur (S)	7	12	1	5	4	23	
Phosphorus (P)	1	26	1	6	5	5	
Potassium (K)	4	27	14	26	58	11	
Magnesium (Mg)	1	15	3	15	22	43	
Calcium (Ca)	4	12	0	2	0	43	
Sodium (Na)	0	0	0	0	NA	7	
Boron (B)	3	15	2	3	2	21	
Zinc (Zn)	0	21	1	18	0	42	
Manganese (Mn)	0	10	0	0	0	17	
Iron (Fe)	0	8	4	8	2	17	
Copper (Cu)	0	13	15	15	15	3	
Aluminum (Al)	NA	11	NA	22	NA	15	

- WITH YOU FROM THE WORD GO -

MPND: (Construction)

*Values in right yellow shaded column under each growth stage based on suggested new sufficiency ranges for high yield (>85 Bu/A) soybeans. Ranges based on mean +- 1 standard deviation.

R² Values - Polynomial Curve Fits for Each Nutrient at Various Growth Stages

	G	rowth Stag	ge	Growth Stage					
Nutrient	R1	R2-R3	R4-R6	Nutrient	R1	R2-R3	R4-R6		
N	0.0388	0.0193	0.0324	В	0.0640	0.0006	0.0176		
S	0.0286	0.0150	0.0522	Zn	0.0611	0.0183	0.1579		
Р	0.0457	0.0127	0.0119	Mn	0.0045	0.0368	0.0952		
К	0.1455	0.0875	0.0167	Fe	0.0169	0.0232	0.0239		
Mg	0.0285	0.0051	0.0441	Cu	0.0984	0.0378	0.0244		
Ca	0.0269	0.0118	0.0368	AI	0.0069	0.0235	0.0230		
Na	0.0081	0.0025	0.0038	AVG.					

Assessing Nutritional Limitations

ample Id : Y	2			0	owin Stage	FINOI LO	pod set (F	(2-((3)	Fiant	Part: Rece	int runy de	veloped	eai (25+)	
	Nitrogen %	Sulfur %	Phosphorus %	Potassium %	Magnesium %	Calcium %	Sodium %	Boron ppm	Zinc ppm	Manganese ppm	Iron ppm	Copper ppm	Aluminum ppm	
Analysis	4.42	0.28	0.36	2.27	0.32	1.07	0.02	54	52	56	105	15	29	
Normal	4.10	0.21	0.26	1.70	0.25	0.50	0.01	20	21	30	50	10	0	
Range	5.50	0.49	0.54	5.50	1.00	2.00	0.03	60	50	100	350	30	300	
	4.3-6.1	0.24-0.34	0.32-0.62	1.8-2.4	0.32-0.46	0.7-1.5	0.01-0.03	24-72	41-69	31-173	75-169	10-16	14-38	
	N/S	N/K	P/S	P/Zn	K/Mg	K/Mn	Ca/B	Fe/Mn	Ca/K	Ca/Mg				
Actual Ratio	15.8	1.9	1.3	69.2	7.1	405.4	198.1	1.9	0.5	3.3			7/1	
Expected Ratio	13.7	1.3	1.1	112.7	5.8	553.8	312.5	3.1	0.3	2.0			141	Ju/A
	18	2.5	1.6	85	5.4	205	229	1.2	0.5	2.8			_ Yi	Bu/A eld
Very High														
High														
Sufficient														
Low														
Deficient														
	N	S	P	K	Mg	Са	Na	В	Zn	Mn	Fe	Cu	AI	

• Need more N, P, Mg, Mn

R² Values - Polynomial Curve Fits for Agronomic Factors x Yield - 2017

Factor	R ² Value	
Planting Date	0.2168	Early planting to max light harvest.
Solar Radiation Early	0.0368	
Solar Radiation Mid	0.0600	
Solar Radiation Late	0.1310	Sunlight to fill pods.
Solar Radiation Total	0.0923	
Rainfall Early	0.0330	
Rainfall Mid	0.1565	Water to set pods.
Rainfall Late	0.0979	
Rainfall Total	0.0600	
Avg. Temp Total	0.0077	

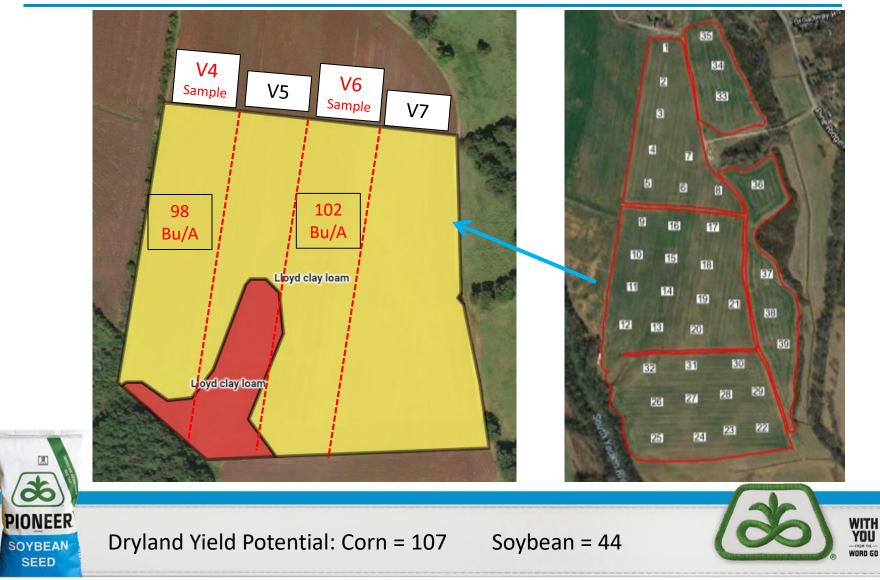
Achieving High Soybean Yields: MFF High Yield Demonstration

Soybean Situation – Southeast

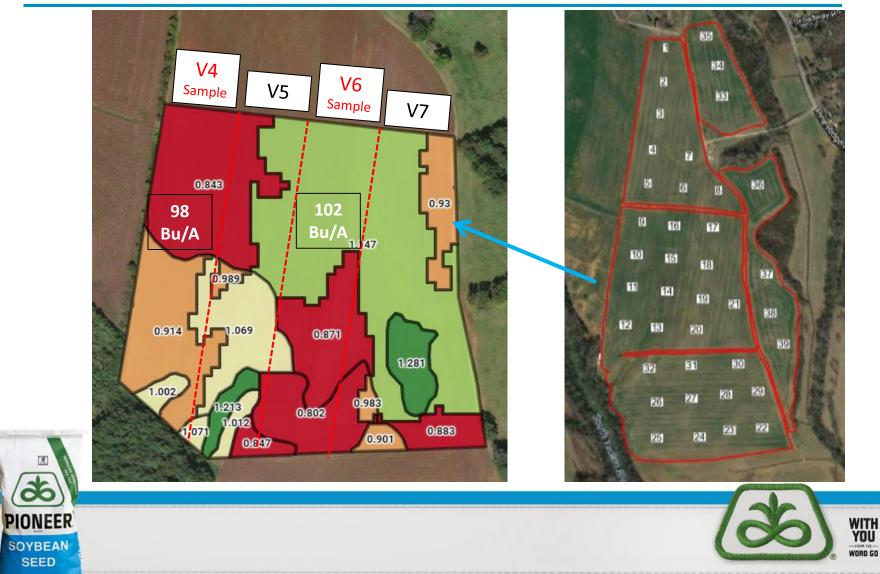
- MG 5-8 determinate varieties still prevalent
- Multiple crop choices for many farms
- May, June and July planting
- Resistance to Southern Root Knot nematode needed
- RKI resistance in Indeterminate varieties may change production practices
- ESPS using indeterminate varieties not thoroughly evaluated but interest is increasing
- Increasing interest in MG 3-4 indeterminate varieties

Key Premises of High Yield Plan

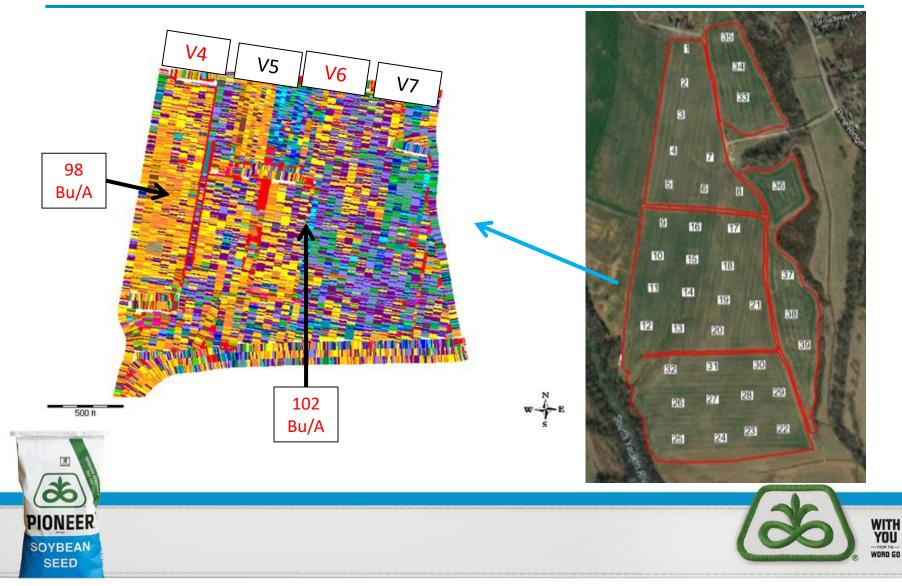
- Early Soybean Production System
 - Indeterminate varieties
 - April planting
- Meet nutrient demand on time for all nutrients
- Irrigate to keep nutrients in solution and to keep plants cool
- Aggressively control insects
- Proactively control diseases
- Timely harvest
- Adjust Management Practices Each Year and Make Improvements



- Demonstration type data
- Data should NOT be viewed as definitive but as a starting point to begin discussions about the drivers of high yield soybeans
- Most data are based on limited sampling points and not truly replicated.



Field Information – Soil Types



Field Information – Mgt. Zones

Field Information – Yield Map

Field Information – Soil

SDI System Limitations Water supply is from river PIONEER P1847vyhr Can't pump when sediment levels are high Difficult to supply early season nutrients when wet

P1443yhr

B PIONEER. P1464vyhr

Field Information – Fall Soil Test (Lbs./A)

	Field	Area	Cent	roid
	irrigat	ed 122.87	acres 35.79	99588,-80.5423
		Min	Ма	x Avg
	Р	54.0	19	0 113
P:Zn ratio too	К	352	119	9 524
low	Mg	498	82	1 669
	Ca	1712	303	0 2195
	S	50.0	96.	0 69.4
	В	1.0	2.	4 1.3
Need more Fe	Cu	2.7	7.	7 4.4
	Fe	108	27	5 152
relative to Mn	Mn	197	43	5 338
Low pH in	Zn	11.0	63.	2 31.1
Low pH in	рН	5.3	6.	7 6.3
some zones	bpH	7.5	7.	7 7.6
	OM	2.2	4.	0 3.1
	CEC	9.8	14.	1 12.0
	%K	3.6	11.	3 5.6
High %Mg	%Mg	18.9	27.	1 23.3
Saturation	%Ca	37.8	56.	0 45.6
4	%Н	20.6	33.	1 25.5

06

PIONEER

SOYBEAN SEED

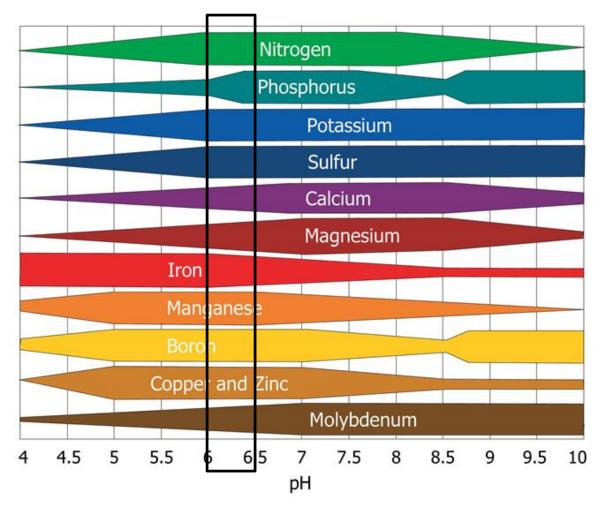
Ratio Analysis

Level/Ratio	Target	CV4	CV6	Spring	Status	Action
Ca:Mg	3:1 (Sand) 7:1 (Clay)	3:1	3:1	3:1	Low	More Ca
K:Mg	1:1	0.6:1	0.5:1	0.8:1	Low	More K
P:Zn	10:1	3:1	4:1	7:1	Low	More P
K:Na	4:1			10:1	OK	None
Fe:Mn	Up to 2:1	0.4:1	0.4:1	0.4:1	Low	More Fe
P:S	1:1	1:1	1.5:1	4:1	High	More S

Base Saturation Analysis

	Su	ggested Range	S	Coolemee (Lloyd Clay Loam)							
Nutrient	General	Sand	Clay	CV4-Fall (98 Bu/A)	CV6-Fall (102 Bu/A)	Spring (Avg.)					
Са	68	60	70	46	46	48					
Mg	12	20	10	26	24	24					
К	3 - 5	3 - 5	3 - 5	4	4	5					
Н	10 - 15	10 - 15	10 - 15	24	26	21					
Others	2 - 4	2 - 4	2 - 4			2					
	ective Measures		CEC	11.7	11.8	8.4					
	igh Calcium Lime (crease Potassium	pH 6.7+ target)	Ca:K	6.5	5.0	4.5					
• In	• Poultry Litter, crease Phosphoru	• •	рН	6.3	5.9	6.3					
	• Poultry Litter, D lanage micros esp	ry, SDI	1								

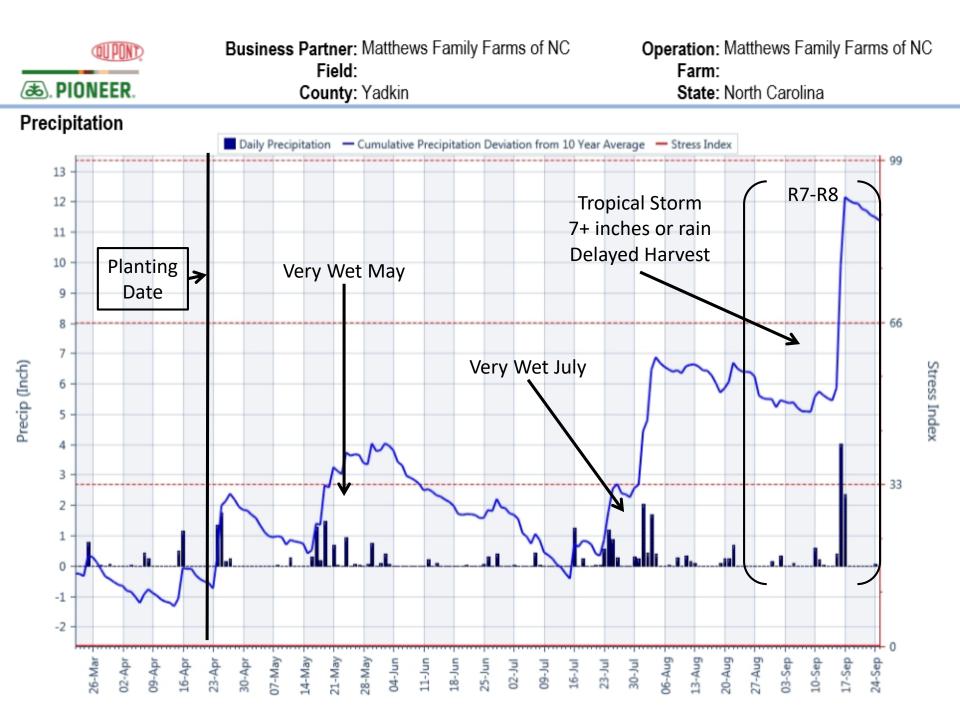
*Comparison of saturation values from lab to lab may not be advised. It is important for you to understand and interpret the values from the lab that you are using. Intent is to show the relative differences in saturation values with various yield levels.

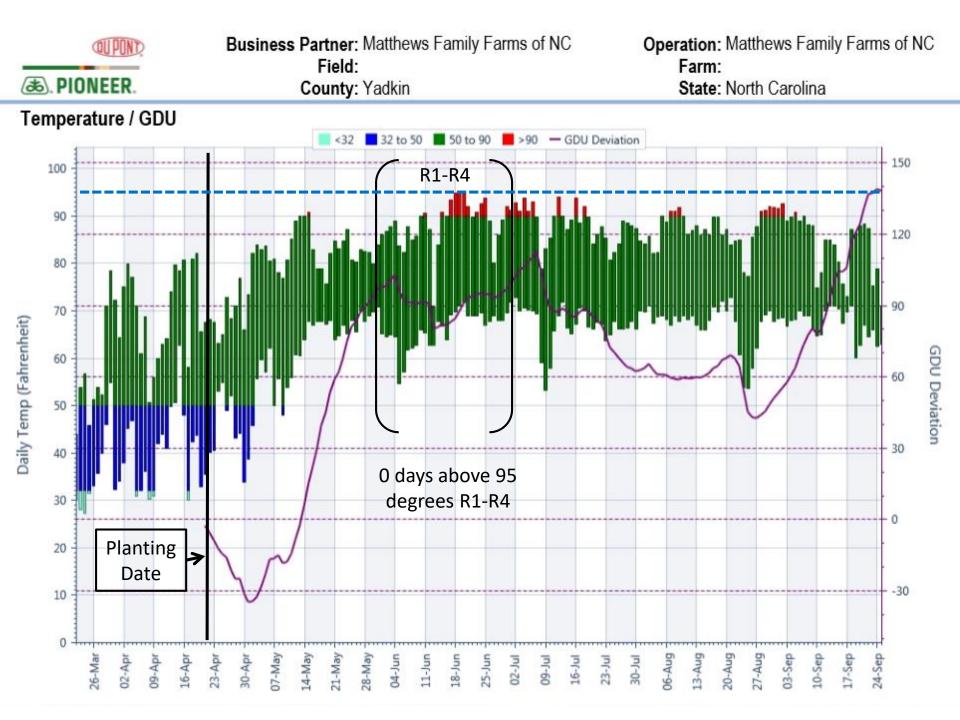

PIONEER

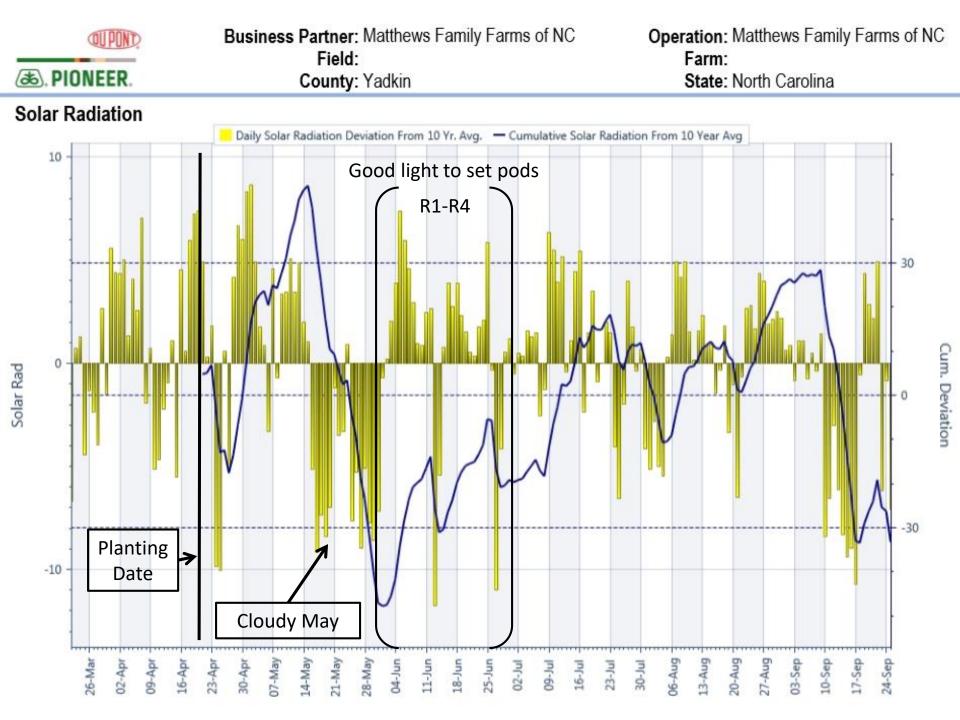
SOYBEAN

SEED

WITH YOU WORNED


Understanding Crop Nutrients and Uptake




Strachan, S.D. 2016. Nutrient Uptake in Corn. DuPont Pioneer Crop Insights, Vol. 26 No. 14.

WITH YOU

- P uptake could be limited
- Mg uptake should not be a problem given high soil levels
- Ca uptake could be limited
- Mo and Fe could be issues
- In-season tracking
- Quick corrections of downward trends with SDI and foliar

NC Soybean Yield Contest

ABOUT US V NCSPA NEWS V THE CHECKOFF V THE ASSOCIATION V GROWER RESOURCES V

2018 YIELD CONTEST WINNERS ANNOUNCED

🛔 Karen Wing 🛗 January 16, 2019 🔳 From the Field 🔍 0 🗞 Post Permalink

f ≇ @ G+ in

Matthews Family Farm of Davie County won the annual North Carolina Soybean Yield Contest for the second year in a row with an entry of 104.5 bushels per acre. Kevin Matthews received the award for the highest yield at the annual NC Commodities Conference of the corn, cotton, small grains and soybean associations in Durham, N.C. The soybean yield contest is administered by North Carolina State University Cooperative Extension and the awards are sponsored by the North Carolina Soybean Producers Association. The winning entries were announced on Jan. 10, 2019.

Matthews (pictured left receiving his award from NCSPA president John Fleming, with Rachel Vann, N.C. State Extension Soybean Specialist and Marsha McGraw, Davie County extension agent) was awarded a plaque and one expense-paid trip to Commodity Classic, the national conference and trade show for the U.S. corn, sorghum, soybean and wheat industries, in Orlando, Fla. on Feb. 27- Mar. 2 2019. Davie County extension agent Marsha McGraw was the soybean agent for Matthews' entry. McGraw will receive one

expense-paid trip to Commodity Classic for her role in producing the winning yield.

Typical Plants

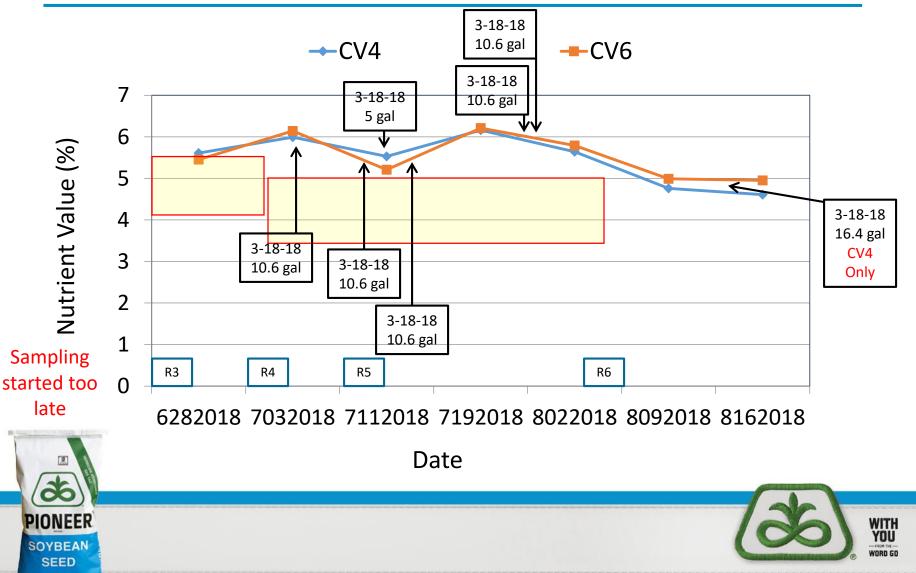
- 20-22 main stem nodes
- Large number of 6 pod nodes
- Impressive pod compensation in thin areas

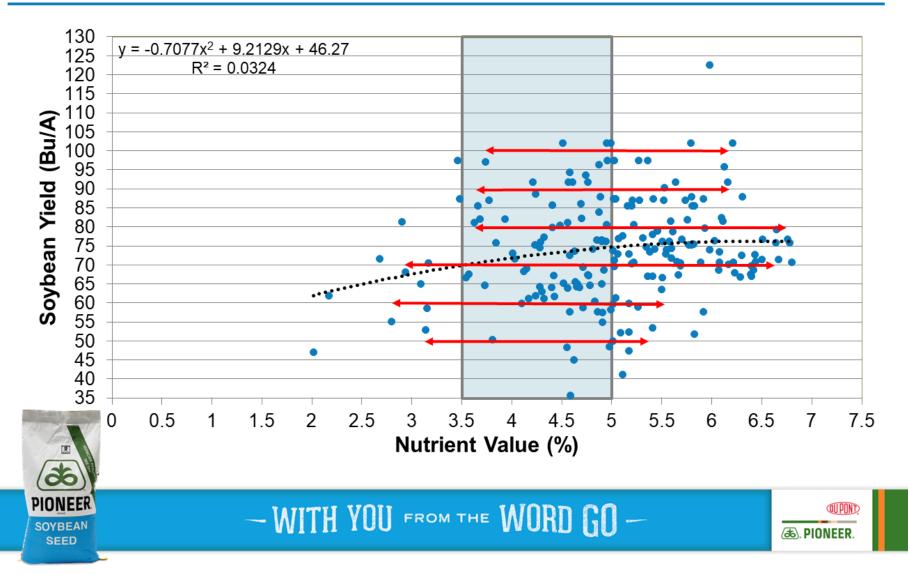
Planting

PKP Plot Yields – Indet. and Det.

Variety/ Brand	Yield (bu/a 60#)	Facto r(s)	Mst (%)	AGI	Yield Rank	YM Verified Yld	YM Verified Mst (%)	YM AGI	YM Yield Rank	# Rows Planted	Harvest Date (Julian Date)	Harvest Width (Inch)	Moisture	Planting Date	Planting Rate (Number per 1/1000 Acre) (Entry)	Row Width (Inch) (Entry)	Tst Wt (lb/bu)
P37A69X	104.3		12.8	\$860	4					12		240.00	12.8		130.0		53.0
P38T42R	96.8		12.9	\$799	8					12		240.00	12.9				53.0
P42A96X	109.4		13.5	\$903	1		Avg.	Yield		12		240.00	13.5	Αν	′g. TV	V	53.0
P46A16R	103.4		13.5	\$853	5					12		240.00	13.5				53.0
P46A93X	99.4		14.2	\$820	7		104	Bu/A		12		240.00	14.2	52.9	9 Lb/	Bu [53.0
P46A57BX	102.2		13.2	\$843	6			,, .		12		240.00	13.2		• /		53.5
P48A60X	107.5		14.3	\$887	3					12		240.00	14.3		130.0		52.5
P52A26R	109.2		14.3	\$901	2					12		240.00	14.3		130.0		52.5

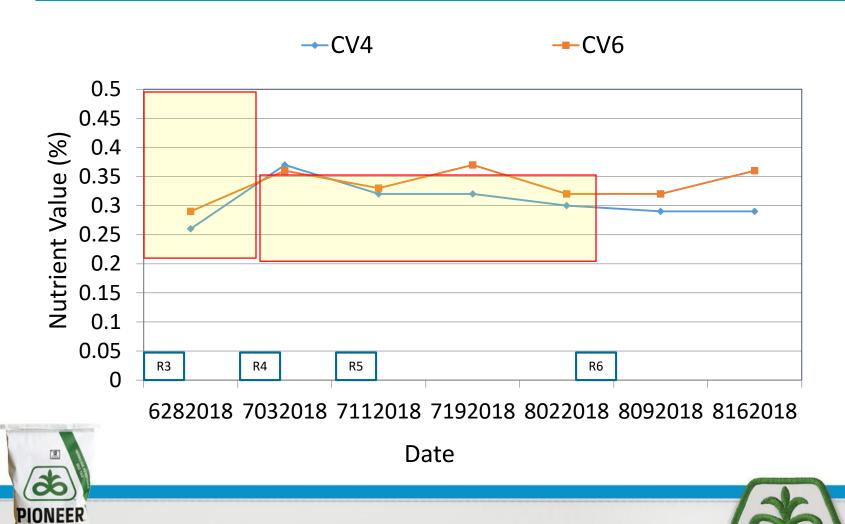
Variety/ Brand	Yield (bu/a 60#)	Facto r(s)	Mst (%)	AGI	Yield Rank	YM Verified Yld	YM Verified Mst (%)		YM Yield Rank	# Rows Planted	Harvest Date (Julian Date)	Harvest Width (Inch)	Moisture		Rate (Number per 1/1000 Acre) (Entry)	Row Width (Inch) (Entry)	Tst Wt (lb/bu)	
P51A61X	94.7		14.8	\$781	1					12		240.00	14.8		130.0		55.0	
P52T50R	92.6		14.8	\$764	3		Δυσ	Viold		12		240.00	14.8	٨		V E	56.0	
P54A75X	93.3		14.1	\$770	2		Avg.	rieiu		12		240.00	14.1	AV	'g. TV	V	55.0	
P55T81R	81.5		14.7	\$672	5		00 0	/٨		12		240.00	14.7		116/	D [56.0	
P55A49X	88.5		14.6	\$730	4		88 B	ou/A		12		240.00	14.6	י.ככ	4 Lb/	bu [55.5	
P60T95X	76.6		15.0	\$632	6					12		240.00	15.0		130.0		55.0	


Nutrient Tracking

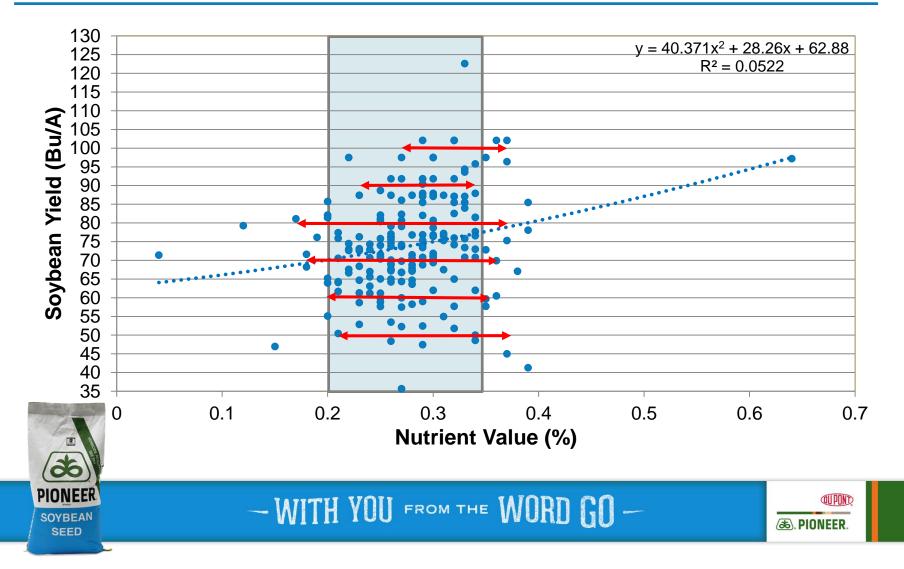


% Nitrogen – Soybeans 2018

% Leaf Nitrogen – Pod Filling (R4 – R6) 2017-18

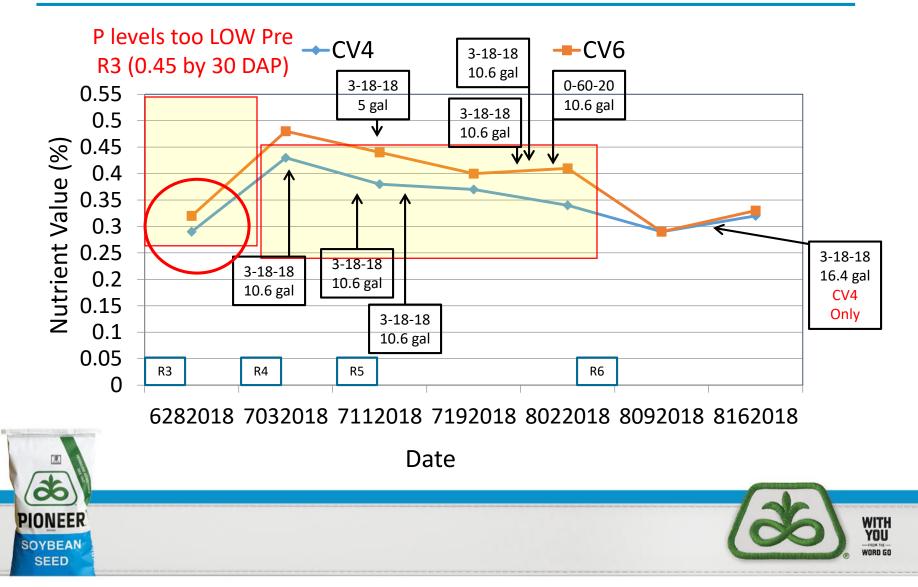

WITH YOU

VORD GO

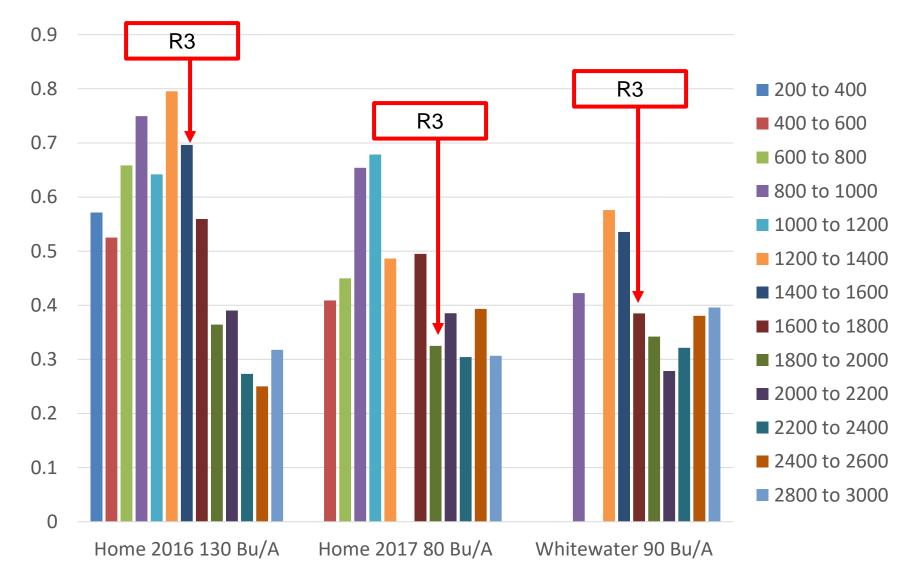

% Sulfur – Soybeans 2018

SOYBEAN

SEED



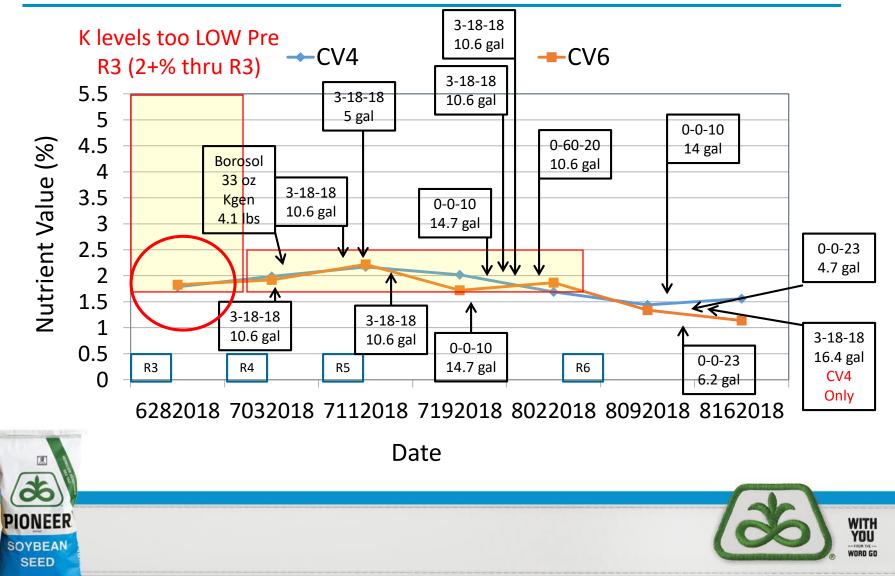
% Leaf Sulfur – Pod Filling (R4 – R6) 2017-18


% Phosphorus – Soybeans 2018

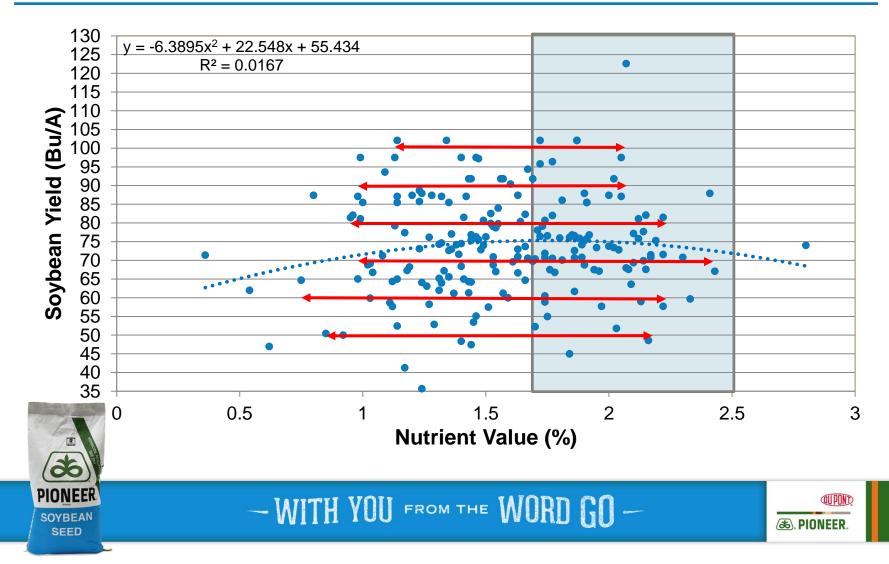
Nutrient Level Comparisons - Phosphorus

QU POND

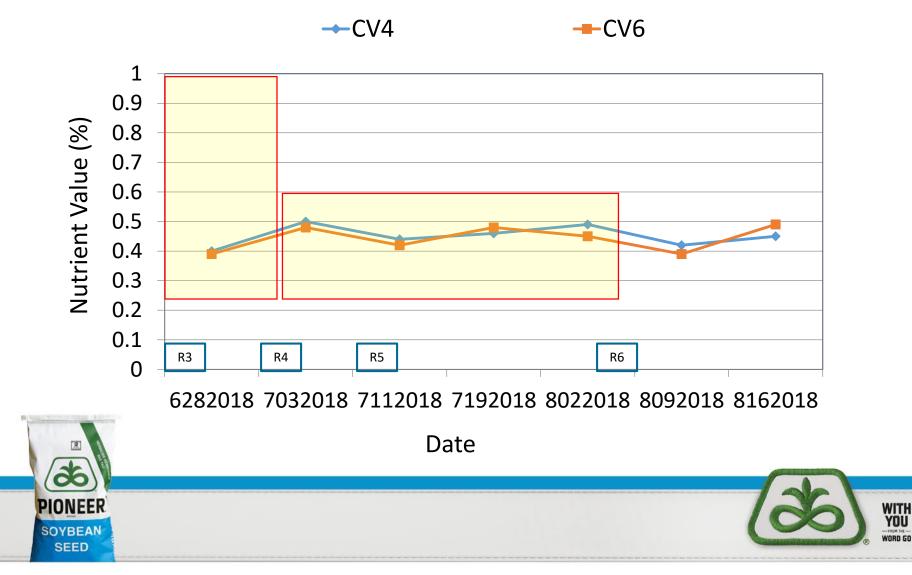
B PIONEER.



Pioneer[®] brand products are provided subject to the terms and conditions of purchase which are part of the labeling and purchase documents The DuPont Oval Logo is a registered trademark of DuPont.[®], TM, SM Trademarks and service marks of Pioneer.[©] 2014 PHII.



% Potassium – Soybeans 2018



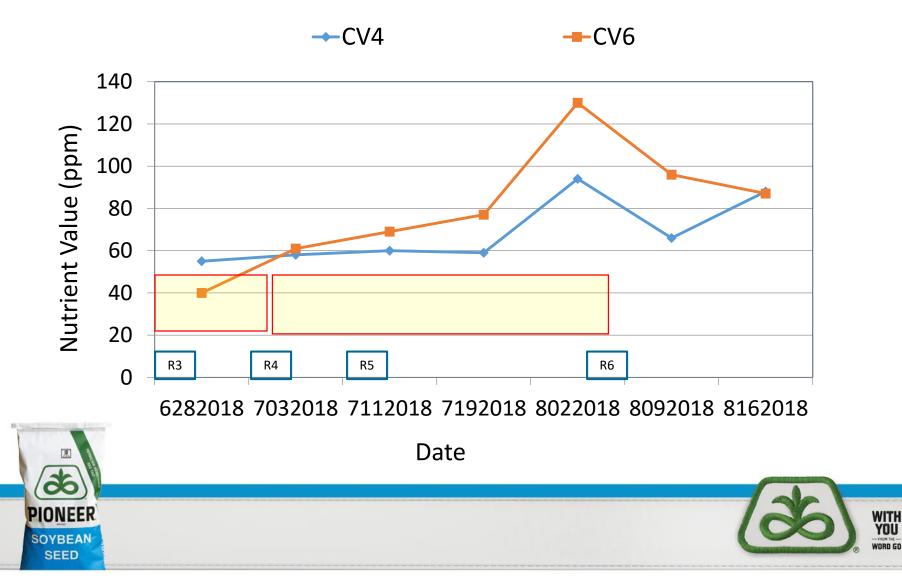
% Leaf Potassium – Pod Filling (R4 – R6) 2017-18

% Magnesium – Soybeans 2018

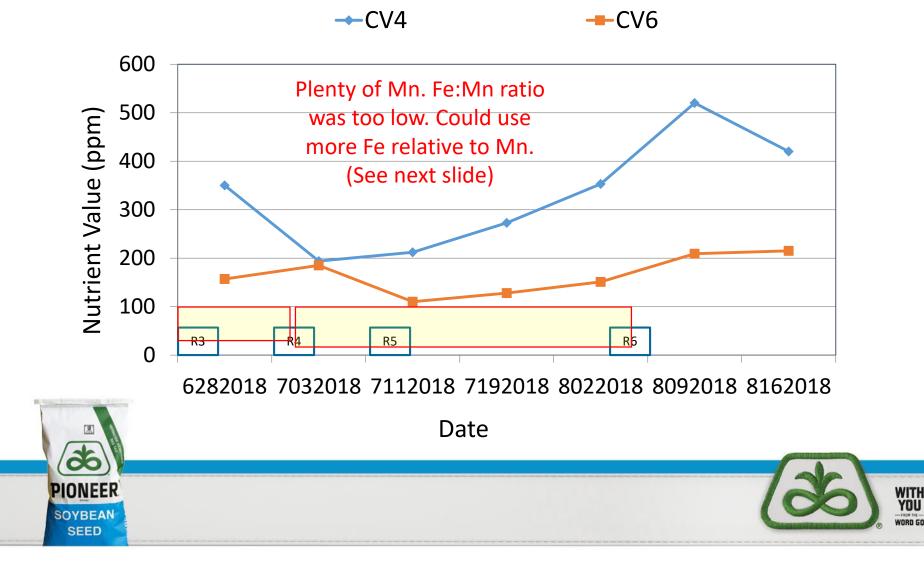
% Calcium – Soybeans 2018



WITH YOU

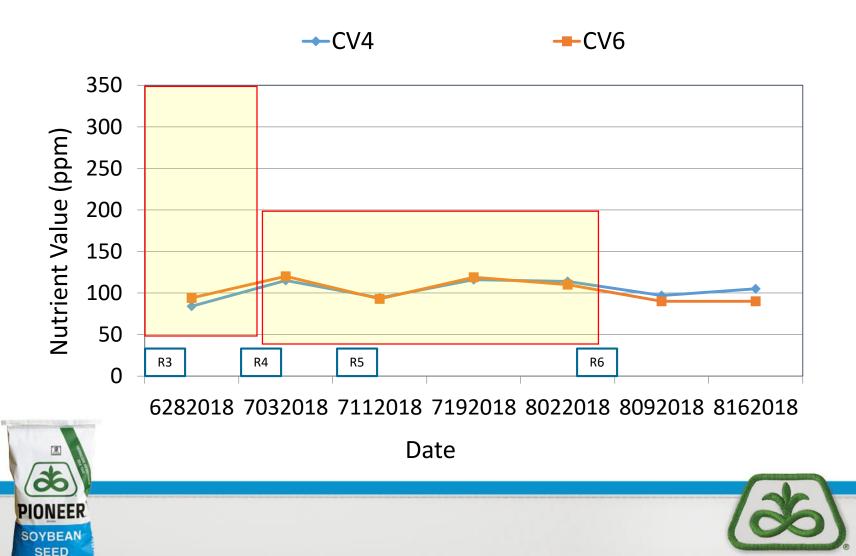

-FROM THE ---

Boron ppm – Soybeans 2018



Zinc ppm – Soybeans 2018

Manganese ppm – Soybeans 2018



WITH YOU

VORD GO

Iron ppm – Soybeans 2018

Copper ppm – Soybeans 2018

In-Season Applications*^

Date	Product	Amount	Date	Product	Amount	Date	Product	Amount
4-21-18*	2.9-17-21	14.9 gal	6-19-18*	Tombstone Helios	1.4 oz	7-11-18	3-18-18	5 gal
5-3-18*	3-18-18	1.24 gal	6-19-18*	HR1	1.6 gal	7-12-18	3-18-18	10.6 gal
6-9-18*	3-18-18	1.14 gal	6-22-18	0-0-10	10 gal	7-21-18	0-0-10	14.7 gal
6-16-18*	Weatherguard	1.62 oz	6-24-18	0-0-10	10 gal	7-22-18	0-0-10	14.7 gal
6-16-18*	RoundUp	22.24 oz	6-27-18	0-0-10	10 gal	7-29-18	3-18-18	10.6 gal
6-16-18*	Borosol (10% B)	33.42 oz	7-3-18	3-18-18	10 gal	7-30-18	3-18-18	10.6 gal
6-16-18*	Priaxor	4.18 oz	7-4-18*	Borosol	33.1 oz	8-1-18	0-60-20	10.6 gal
6-16-18*	Weatherguard	1.04 oz	7-4-18*	Carbose	14.5 oz	8-12-18	0-0-10	14 gal
6-16-18*	Lokomotive (2-0-25)	66.83 oz	7-4-18*	Kgen	4.1 Lbs	8-13-18	0-0-23	6.2 gal
6-16-18*	Carbose	2.09 oz	7-4-18*	Tombstone Helios	2.5 oz	8-14-18	0-0-23	3.4 gal
6-16-18*	VitaNterra	33.42 oz	7-4-18	3-18-18	5 gal	8-14-18^	3-18-18	16.4 gal
			7-9-18	3-18-18	10.6 gal			

*Denotes application by ground rig.

^Application made only to CV 4.

In-Season Nutrient Amounts

Product	Total Amount	N	Р	К	В
3-18-18	60.8* gal	21	128	128	0
2.9-17-21	14.9 gal	5	28	34	0
0-0-10	73.4 gal	0	0	72	0
0-0-23	9.6 gal	0	0	28	0
0-60-20	10.4 Lbs	0	6.24	2.08	0
Borosol	66.52 oz	0	0	0	0.6
Total Applied		26	162	264	0.6
Uptake 101 B	u/A Flannery	548	60	286	
Uptake 101 B	u/A Gaspar	488^	40	204	0.24#

*Extra application made only to CV 4.^Value estimated by Pioneer.#Values from Gaspar et al. Value likely underestimated.

How big is the factory?

- 60 Bu/A Soybeans
 - 36 g dry weight per plant
 - 9,000 lbs biomass
- 95 Bu/A Soybeans
 - 40 g dry weight per plant
 - 10,949 lbs biomass
- 103 Bu/A Soybean
 - 57 g dry weight per plant
 - 12,594 lbs biomass

Key Observations

- Early SDI difficult due to river sediment and wet field conditions
 - Too much dependence on SDI to deliver early nutrients
 - Need to build soil nutrients levels to optimum
- Need to focus more on micronutrients in future
 - Balance Fe:Mn
 - Monitor and address others as needed
- Timely Harvest extremely critical
 - 10-20 Bu/A yield loss due to rain delays from tropical storm
- May need some sulfur via SDI
- More Ca into system to improve soil porosity

Questions?

