### Cation Exchange Capacity – It's Role in Crop Production



Dustin Harrell dharrell@crrf.org (530) 868-5481 (office) (530) 774-3874 www.crrf.org



Louisiana Agriculture Technology & Management Conference February 7-9, 2024

## Acknowledgements:

#### Dr. Brenda Tubana, LSU

AgCenter



#### Dr. Trent Roberts, UA





# Introduction to Important Terms

- <u>Cation</u> positively charged ion (Ca<sup>2+</sup>, Mg<sup>2+</sup>, Na<sup>+</sup>, K<sup>+</sup>)
- <u>Anion</u> Negatively charged ions (OH<sup>-</sup>, NO<sub>3</sub><sup>-</sup>)
- <u>Soil Colloids</u> most

chemically active fraction of

the soils

• Clay (mineral component of soil) or humus (organic)



# Introduction to Important Terms

- <u>Cation Exchange Capacity (CEC)</u> The sum of exchangeable cations on soil colloids (clay and SOM) at a given pH that are attracted to soil solid phase negative charges.
  - the capacity of a soil to hold cations (or the susceptibility to leaching).
- <u>Adsorption</u> electrostatic attraction to the outside of the colloid (think adhere);
  <u>NOT</u> the same as <u>absorption</u>



# CEC Relationships (Interpretations)

#### • Units of expression

- meq/100 grams soil (old units)
- cmolc/kg soil (new units, note 100 cmol = 1 mol)
- 1 meq/100 g = 1 cmolc/kg

 The larger the CEC value the greater the capacity to hold nutrients



## Where does the (-) charge come from?

- <u>Permanent Charge</u>
  - The negative charge of clay minerals resulting from isomorphic substitution.
    - When Al<sup>3+</sup> replaces Si<sup>4+</sup> (in Si tetrahedral sheet)
    - When Mg<sup>2+</sup> or Fe<sup>2+</sup> replace Al<sup>3+</sup> (in Al octahedral sheet)
  - Uniformly distributed over the surface of the clay particles.
  - Not affected by soil pH.



# Where does the (-) charge come from?

- pH Dependent Charge
  - Arises from the broken edges of clay particles layer silicates
  - The charge of these exposed edges depends on the soil pH
    - Low pH (abundance of H<sup>+</sup>) results in positive charge or lower CEC
    - High pH (abundance of OH<sup>-</sup>) results in negative charge or higher CEC
  - Significant source of CEC in 1:1 clays and OM



## CEC Relationships (Interpretations)

• Indirectly indicates

information about clay type,

clay content, and organic

#### matter content

| Soil Texture        | C.E.C.<br>(Arkansas) | C.E.C.<br>(Midwest) |  |
|---------------------|----------------------|---------------------|--|
|                     | cmol <sub>c</sub> /  | kg soil             |  |
| Loamy Sand          | <3                   | 3-20 (depends       |  |
| Sandy Loam          | 3-10                 | on SOM)             |  |
| Silt Loam           | 8-20                 | 15-25               |  |
| Clay loam -<br>Clay | >18                  | 20-50               |  |
| Organic             | >50                  | >50                 |  |

| Mineral   | Layer | Layer<br>charge | Spacing CEC            |                       | pH-<br>depend |
|-----------|-------|-----------------|------------------------|-----------------------|---------------|
|           |       |                 | Angstroms              | cmol <sub>c</sub> /kg | Charge        |
| Kaolinite | 1:1   | 0               | 7.2                    | 1 – 10                | High          |
| Illite    | 2:1   | 1.0             | 10 <b>20 – 40</b>      |                       | Low           |
| Vermic.   | 2:1   | 0.8             | 10-15 <b>120 – 150</b> |                       | Low           |
| Montmor.  | 2:1   | 0.4             | Varies <b>80 – 120</b> |                       | Low           |
| SOM       |       |                 |                        | 100 - 300             | High          |

## CEC Relationships (Interpretations)

• Indirectly indicates information about clay type, clay content, and organic matter content



## **Residual herbicides and CEC**

## Often rate are based on soil texture

 Rate increased with increasing clay content (CEC).

#### COMMAND 3ME MICROENCAPSULATED HERBICIDE USE RATE

| SOIL TEXTURE                                                     | BROADCAST RATES PER ACRE*    |
|------------------------------------------------------------------|------------------------------|
| Coarse (light) soils: (sand, loamy sand, sand loam)              | 11-14 oz. (0.25-0.33 lb. ai) |
| Medium soils: loam, silt, silt loam, sandy clay, sandy clay loam | 17-21 oz. (0.4-0.5 lb. ai)   |
| Fine (heavy) soils: silty clay, clay loam, silty clay loam, clay | 21-34 oz. (0.5-0.8 lb. ai)   |

## Lyotropic Series

- The strength of cation adsorption to a cation exchange site
- Order determined by cation properties



- Ion charge  $(3^+ > 2^+ > 1^+)$
- Ion size, larger hydrated size creates more distance between the opposite charges
- Charge density, Combination of ion size and valence

## Cation Exchange



## CEC and Soil Test Reports

- Most labs estimate soil CEC using 'cation summation'
  - <u>Basic Cations</u>: Ca + Mg+ K + Na
  - <u>Acidic Cations</u>: H + Al
- Provides good estimate
- True determination of CEC is time consuming

## **CEC Extraction Procedure**



### **CEC Extraction Procedure**

1 *M* KCl



## Example of Soil Base Saturation and CEC Calculations

- 10 grams soil
- 50 mL of 1 M NH<sub>4</sub>OAc (extractant #1)

- Ca = 241mg/L = 6.03 cmol<sub>c</sub> Ca/kg

- Mg = 102 mg/L = 4.19 cmol<sub>c</sub> Mg/kg

$$-$$
 Na = 29 mg/L = 0.63 cmol<sub>c</sub> Na/kg

 $- K = 63 \text{ mg/L} = 0.81 \text{ cmol}_{c} \text{ K/kg}$ 

• 50 mL of 1 *M* KCl (extractant #2)

 $- NH_4 = 485 \text{ mg/L} = 13.47 \text{ cmol}_c NH_4/\text{kg}$ 

- CEC =  $13.47 \text{ cmol}_{c}/\text{kg}$
- Base Saturation = 87%

## Base Saturation and Cation Saturation Ratios

- <u>Base Saturation</u> The percentage of the soil CEC occupied by a basic cations (Ca<sup>2+</sup>, Mg<sup>2+</sup>, Na<sup>+</sup>, & K<sup>+</sup>)
- Ideal 'Basic Cation Saturation Ratio' Concept
- Soil Fertility Philosophy, max yields can be achieved only when the basic cations are in some optimal ratio
- Does not involve P, S, N, and micronutrients

#### **Optimum Suggested Ratios**

| Cations | Ideal Saturation |
|---------|------------------|
|         | % of CEC sites   |
| Ca      | 65 - 85%         |
| Mg      | 6 - 12%          |
| к       | 2 – 5%           |

## **Basic Cation Saturation**

### Ratio

### UNIVERSITY OF ARKANSAS DIVISION OF AGRICULTURE

| Nutrient | Bear et<br>al. (1945) | Graham<br>(1959)           | Baker &<br>Amacher (1981) |  |
|----------|-----------------------|----------------------------|---------------------------|--|
|          |                       | Base Saturation            | ıs (%)                    |  |
| Ca       | 65                    | 65 - 85                    | 60 - 80                   |  |
| Mg       | 10                    | 6 - 12                     | 10 - 20                   |  |
| K        | 5                     | 2 - 5                      | 2 - 5                     |  |
|          | Ba                    | se Cation Saturat          | ion Ratios                |  |
| Ca:Mg    | 6.5:1                 | 5.4:1 - 14.1:1             | 3.0:1 - 8.0:1             |  |
| Ca:K     | 13:1                  | 13.0:1 - 42.5:1            | 12.0:1 - 40.0:1           |  |
| Mg:K     | 2:1                   | 1.2:1 - 6.0:1 2.0:1 - 10.0 |                           |  |

#### Is the BCSR Concept Valid?

- The majority of research indicates high yields can be produced across a wide range of cation ratios
- There are some valid points to this concept, but soil nutrient management strictly by the BCSR is not recommended

Source: Rehm (2009) North Central Regional Ext Publ. #553. http://www.extension.umn.edu/distribution/cropsystems/DC6437.html

| Way                         |           |              | "Every a           | 2<br>acreEvery yea | 790 Whitten R<br>Main 901.213<br><sub>ar®</sub> " www | oad, Mei<br>.2400 ° F<br>/.waypoi | nphis, T<br>ax 901.2<br>ntanalyt | N 38133<br>213.244(<br>tical.com                           | Ag                             | Solution                 | <b>en</b><br>s <sup></sup>  |
|-----------------------------|-----------|--------------|--------------------|--------------------|-------------------------------------------------------|-----------------------------------|----------------------------------|------------------------------------------------------------|--------------------------------|--------------------------|-----------------------------|
| Client :<br>Nutrien Ag Solu | tions, Ir | uc. (Elton)  | Grou               | wer :              |                                                       |                                   |                                  | Report I<br>Cust No<br>Date Pr<br>Date Re<br>PO:<br>Page : | No:<br>o:<br>inted:<br>eceived | 23-331<br>11/:<br>: 11/: | 20006<br>28/2023<br>27/2023 |
| Lab No: 49337               |           |              |                    | Field              | I•                                                    |                                   |                                  | Sample                                                     | ID: #2                         |                          |                             |
|                             |           |              |                    | SO                 | II TEST RATI                                          | NGS                               |                                  | oumpro                                                     |                                | Calculato                | d Cation                    |
| Test                        | Method    | Results      | Very Low           | Low                | Medium                                                | Opti                              | num                              | Very H                                                     | ligh                           | Exchange                 | Capacity                    |
| Soil pH                     | 1:1       |              |                    |                    |                                                       |                                   |                                  |                                                            |                                | 8.7 m                    | neq/100g                    |
| Buffer pH                   | SMP       |              |                    |                    |                                                       |                                   |                                  |                                                            |                                | %Satu                    | ration                      |
| Phosphorus (P)              | M3        | 8 LB/ACRE    |                    |                    |                                                       |                                   |                                  |                                                            |                                | %sa                      | t meq                       |
| Potassium (K)               | M3        | 134 LB/ACRE  |                    |                    |                                                       |                                   |                                  |                                                            |                                | K 2.                     | 0 0.2                       |
| Calcium (Ca)                | M3        | 1128 LB/ACRE |                    |                    |                                                       |                                   |                                  |                                                            |                                | Ca 32.                   | 4 2.8                       |
| Magnesium (Mg)              | M3        | 384 LB/ACRE  |                    |                    |                                                       |                                   |                                  |                                                            |                                | Mg 18.                   | 4 1.6                       |
| Sulfur (S)                  | M3        | 30 LB/ACRE   |                    |                    |                                                       |                                   |                                  |                                                            |                                | H 43.                    | 7 3.8                       |
| Boron (B)                   | M3        | 0.6 LB/ACRE  |                    |                    |                                                       |                                   |                                  |                                                            |                                | Na 3.                    | 4 0.3                       |
| Copper (Cu)                 | M3        | 2.0 LB/ACRE  |                    |                    | <u> </u>                                              |                                   |                                  |                                                            |                                |                          |                             |
| lron (Fe)                   | M3        | 518 LB/ACRE  |                    |                    |                                                       |                                   |                                  |                                                            |                                | K/Mg <del>natio:</del>   | 0.10                        |
| Manganese (Mn)              | M3        | 394 LB/ACRE  |                    | •                  |                                                       | ·                                 |                                  |                                                            |                                | Ca/Mg Ratio              | : 1.76 📒                    |
| Zinc (Zn)                   | M3        | 2.2 LB/ACRE  |                    | ·                  |                                                       |                                   |                                  |                                                            |                                |                          |                             |
| Sodium (Na)                 | M3        | 136 LB/ACRE  |                    |                    |                                                       |                                   |                                  |                                                            |                                |                          |                             |
| Soluble Salts               |           |              |                    |                    |                                                       |                                   |                                  |                                                            |                                |                          |                             |
| Organic Matter              | LOI       | 2.1%         |                    |                    |                                                       |                                   |                                  |                                                            |                                |                          |                             |
| Estimated N Release         |           | 86 lbs/acre  |                    |                    |                                                       |                                   |                                  |                                                            |                                |                          |                             |
| Nitrate Nitrogen            |           |              |                    |                    |                                                       |                                   |                                  |                                                            |                                |                          |                             |
|                             |           |              |                    |                    |                                                       |                                   |                                  |                                                            |                                |                          |                             |
|                             |           |              |                    |                    |                                                       |                                   |                                  |                                                            |                                |                          |                             |
|                             |           |              |                    |                    |                                                       |                                   |                                  |                                                            |                                |                          |                             |
|                             |           |              | SOIL FEF           | RTILITY GU         | IDELINES                                              |                                   |                                  |                                                            | ·                              |                          |                             |
| Crop:Rice                   |           |              |                    | Yield              | <b>Goal :</b> 200                                     | bu/acr                            | е                                | Rec U                                                      | nits:                          | l                        | B/ACRE                      |
| (Ibs) LIME                  | (tons)    | N            | P <sub>2</sub> O 5 | K <sub>2</sub> O   | Mg                                                    | S                                 | В                                | Cu                                                         | Mn                             | Zn                       | Fe                          |
| 4000                        | 2         | 200          | 58                 | 117                | 0                                                     | 12                                | 1.0                              | 0                                                          | 0                              | 3.4                      |                             |
| Crop :                      |           |              |                    |                    |                                                       |                                   |                                  | Rec U                                                      | nits:                          |                          |                             |
|                             |           |              |                    |                    |                                                       |                                   |                                  |                                                            |                                |                          |                             |
| Commonto i                  |           |              |                    |                    | ļ                                                     |                                   | ļ                                | I                                                          | ļ                              |                          |                             |

<sup>•</sup> Calculated CEC

| Soil Texture        | C.E.C.<br>(Arkansas)       | C.E.C.<br>(Midwest) |  |  |  |
|---------------------|----------------------------|---------------------|--|--|--|
|                     | cmol <sub>c</sub> /kg soil |                     |  |  |  |
| Loamy Sand          | <3                         | 3-20 (depends       |  |  |  |
| Sandy Loam          | 3-10                       | on SOM)             |  |  |  |
| Silt Loam           | 8-20                       | 15-25               |  |  |  |
| Clay loam -<br>Clay | >18                        | 20-50               |  |  |  |
| Organic             | >50 >50                    |                     |  |  |  |

- Sandy loam *or* silt loam, low fertility, leach prone (K, NO3)
- Low pH, kaolinite, lime would improve fertility, increase CEC, reduce leaching

• Use low rate of residual herbicides

| Cations | Ideal Saturation |
|---------|------------------|
|         | % of CEC sites   |
| Ca      | 65 - 85%         |
| Mg      | 6 – 12%          |
| K       | 2 - 5%           |

# Thank you

Dustin Harrell <u>dharrell@crrf.org</u> (530) 868-5481 (office) (530) 774-3874



#### Field Day August 28, 2024