Understanding narrow brown leaf spot host resistance and pathogen population dynamics

Jonathan Richards

Department of Plant Pathology and Crop Physiology, LSU AgCenter Collaborators: Adam Famoso, Brijesh Angira, Felipe Dalla Lana H. Rouse Caffey Rice Research Station

Outline

- 1. CRSP2.1 major gene resistance
- 2. Sheath resistance: the new frontier
- 3. Has CRSP2.1 been overcome?
- 4. Pathogen population dynamics
- 5. New problems to tackle

Narrow Brown Leaf Spot

- Cercospora janseana
- Narrow brown lesions on leaf tissue
- Net blotch pattern on sheath/stem
- Yield losses up to 40%
- Fungicide applications
 - Widespread Qol resistance (75%)
 - Propiconazole
- Host resistance is a viable strategy

Groth and Hollier, 2010

CRSP2.1-mediated resistance

- Goal: identify causal gene
 - Collaborative project with Drs. Famoso and Angira
- High level of foliar resistance
- Identified three candidate genes
- Gene identification/validation aids
 effective deployment

CRSP2.1 +

CRSP2.1 -

Stem/sheath symptoms are 'different'

- CRSP2.1 provides broad spectrum resistance in leaf tissue
- Discovered that CRSP2.1 does not provide sheath/stem resistance
- Do different genes control resistance in sheath/stem?
- Are different races involved?
- Need to look for symptoms beyond the leaf
- Currently phenotyping in GH
 - Identify sheath/stem resistance

Developing sheath phenotyping protocol

- Previous phenotyping protocol focused on leaves
- No published rating scale

Score	Symptom Description
0	No visible lesions
1	Pinpoint lesions, little to no expansion
2	Expanding lesions, longitudinal and transverse
3	Larger net blotch pattern
4	Large, dark, coalesced lesion
5	Completely dead tissue, collapse

Impact: New protocol and rating scale can be used in controlled greenhouse evaluations

Identifying sheath NBLS resistance

- Sixteen varieties were evaluated in greenhouse trials
- DG263L identified with potentially broad-spectrum sheath/stem resistance
- Phenotyped F₂ population
 - DG263L x breeding line
- Segregated as single gene

Impact: Identification and initial genetic screen lays foundation for mapping and use in breeding

Bonus: leaf resistance in DG263L

- DG263L also has great leaf resistance
- Same F₂ population evaluated for leaf disease
- Segregated as single gene
- Appears that different genes control leaf and sheath resistance

Impact: If leaf resistance is different than *CRSP2.1*, brings another gene that can be used to control NBLS

Has CRSP2.1 been overcome?

- Leaf lesions observed on Lakast and PVL03 in 2023
- Highly resistant in previous years
- Different resistant haplotypes exist and appear effective
- Collected over 20 isolates from Lakast and PVL03 in 2023

Impact: Isolates collected will help determine the extent of virulence and if *CRSP2.1* haplotypes have been defeated.

Photo: S. Gaire

Quantitative Resistance

- Complements major gene resistance
- Increases durability (harder to overcome)
- MPC and MP6/8 evaluated in field and/or greenhouse in 2021-2023

Pathogen Population Dynamics

- Collected over 500 pathogen isolates
- Migration occurs between LA and TX
- High standing genetic variation
- Pathogen can sexually reproduce
- High prevalence of Qol resistance
- No detected resistance to propiconazole

EC50

Sensitive

Resistant (G143A)

Genetic relatedness of sheath isolates

- Eighteen isolates collected from sheaths/stems in 2021
- Six isolates from sheaths in 2015
- Whole-genome sequencing underway
- Analyses suggest no differentiation among leaf/sheath isolates

Impact: Same population that infects leaves can infect stems/sheaths.

Race structure of C. janseana

- Race structure hadn't been evaluated since 1980s in LA
- Phenotyped 16 isolates on 14 rice varieties varying in resistance
- One predominant race (62.5%)
- One race with broad virulence, low prevalence
- Race typing will continue in 2024

Impact: First glimpse into race diversity in over 30 years. Knowing prevalent races guides variety selection.

C. janseana Races

New problems to tackle in 2024 and beyond

- 1. What is the genetic control of sheath resistance?
- 2. Has the pathogen overcome *CRSP2.1*?
- 3. How can we efficiently incorporate quantitative resistance into elite varieties?

Main focus: Sheath/stem resistance and potentially novel race

Acknowledgements

Richards Lab

Dr. Shankar Gaire Dr. Asher Tarun Dr. Pedro dos Santos Jacob Searight **Dablieny Souza Bernard Budot** Alejandra Vargas Casey Butler Stephanie Peralta

LSU AgCenter

Dr. Vinson Doyle

Dr. Adam Famoso

Dr. Brijesh Angira

Dr. Christopher Addison

Dr. Tommaso Cerioli

THIS RESEARCH FUNDED IN PART BY THE LOUISIANA Rice with Research Research

United States Department of Agriculture National Institute of Food and Agriculture

<u>Cornell</u>

Dr. Susan McCouch Dr. Kelly Robbins Dr. Chris Hernandez Dr. Francisco Agosto-Perez

Funding

USDA-NIFA Project 1025220 Louisiana Rice Research Board LSU AgCenter COE Fund