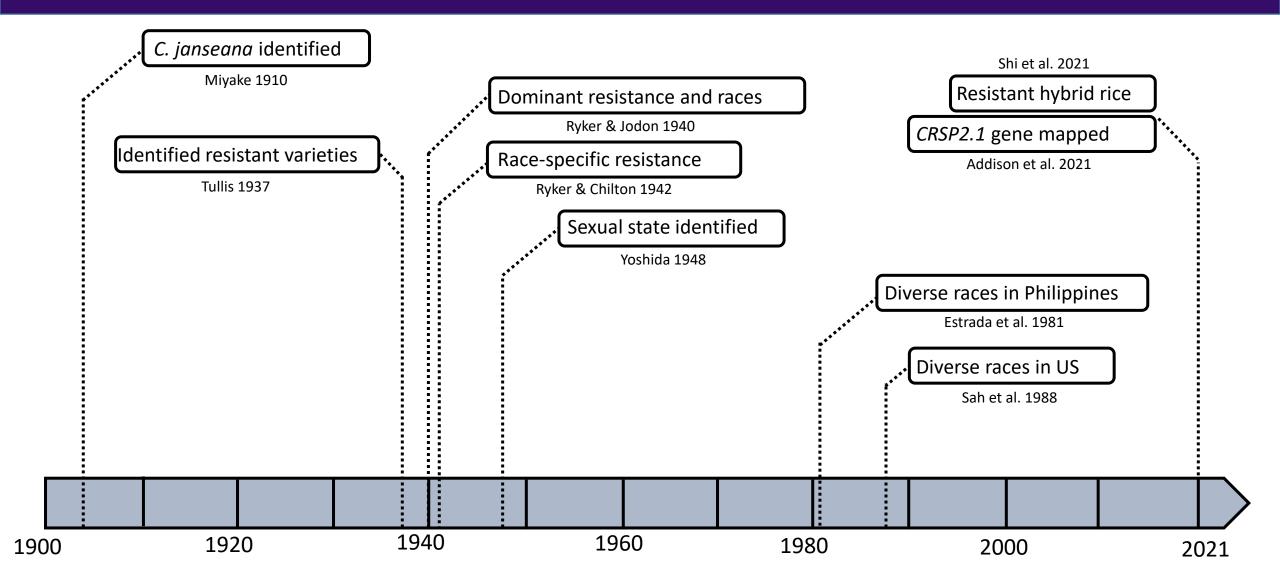
New Insights Into Narrow Brown Leaf Spot of Rice

Jonathan Richards Assistant Professor

Department of Plant Pathology and Crop Physiology, LSU AgCenter

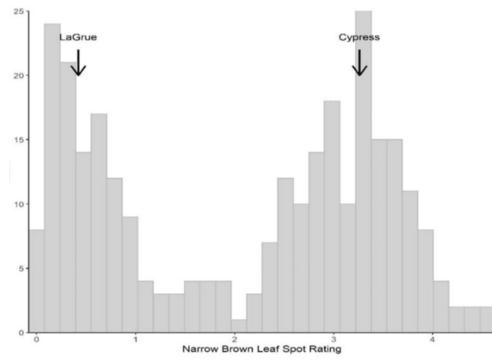
Narrow Brown Leaf Spot

- Cercospora janseana
- Narrow brown lesions on leaf tissue
- Net blotch pattern on sheath/stem
- Late-season disease
 - Earlier plantings, less disease
 - Ratoon impact
- Yield losses up to 40%
- Fungicide applications
- Host resistance is a viable strategy


Groth and Hollier, 2010

The problem(s)

- What is the genetic architecture of host resistance to NBLS?
- Are leaf and sheath symptoms under different genetic control?
- Can quantitative resistance be incorporated into elite lines?
 Stacking with major genes can prevent resistance gene defeat
- Can C. janseana migrate between production regions and sexually reproduce?
- Are *C. janseana* populations resistant to fungicides?


Applied and basic approaches to understand disease resistance/management

A brief history of NBLS research

CRSP2.1 Major Resistance Gene

- Originally identified/mapped by Addison et al. (Famoso lab)
- Major effect resistance
- Leaf tissue nearly immune

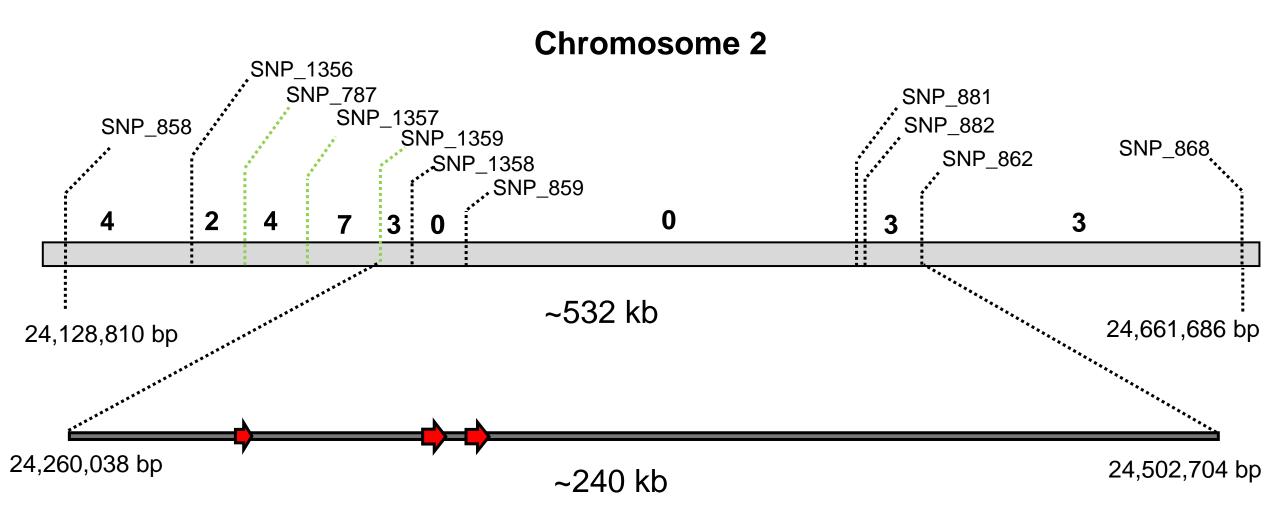
CRSP2.1 +

CRSP2.1 -

Addison et al. 2021

CRSP2.1 Major Resistance Gene

- Identification of the CRSP2.1 gene
- Fine mapping approach
 - Genotyped ~10,000 individuals
 - Phenotyped in greenhouse
 - Comparative genomics


Finding gene can aid deployment and understand/identify other forms of resistance

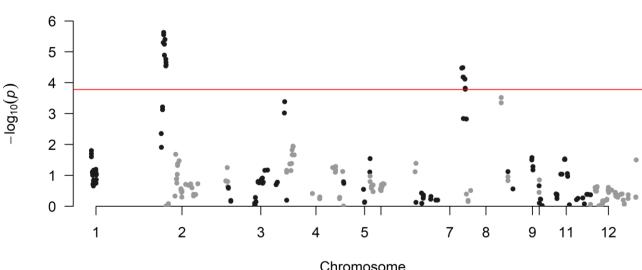
CRSP2.1 -

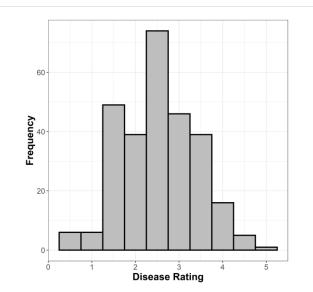
CRSP2.1 +

Three candidate receptor-like kinase genes

Which gene is it? Currently functionally validating candidates

Stem/sheath symptoms are 'different'


- CRSP2.1 provides broad spectrum resistance in leaf tissue
- Lines with CRSP2.1 may develop stem/sheath symptoms (PVL03)
 - Differences in gene expression?
- Do different genes control resistance in sheath/stem?
- Are different races involved?
- Need to look for symptoms beyond the leaf
- Currently phenotyping in GH
 - Identify sheath/stem resistance



Quantitative NBLS Resistance

- MPC population (Cypress x CL172)
 - Neither parent has CRSP2.1
- Normal distribution of phenotypes
- Quantitative resistance detected (small effect, ~8-10%)
- Preliminary predictions were promising (0.54)
- Evaluation in field and GH in 2023

Are quantitative resistance loci stable across years? Can genomic prediction be used to make genetic gains?

Now, what is the pathogen doing?

Genetic diversity of C. janseana

- High genetic diversity in LA populations
- Migration to/from Texas
- Evidence for sexual recombination
 - New virulent race formation

Sampling Population	Location	Date	Isolates Collected	Isolates Sequenced
1	Crowley, LA	09/2019	118	32
2	Beaumont, TX	10/2019	181	27
3	Crowley, LA	08/2020	84	27
4	Beaumont, TX	10/2020	62	28
5	Crowley, LA	10/2020	19	16

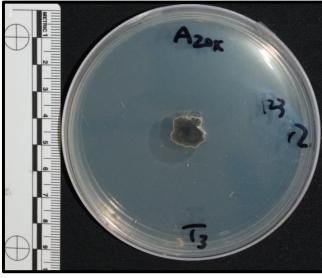
Idiomorph	# of Individuals		
MAT1-1	69		
MAT1-2	70		
Total	139		
X ² = 0.007, p-value = 0.93241			

Assess virulence of C. janseana in LA

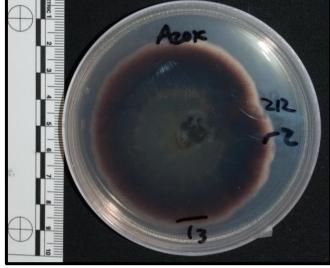
- Previous studies indicated high virulence diversity
- How many races exist/are prevalent?

Cypress (Susceptible)

Delitus (Resistant)

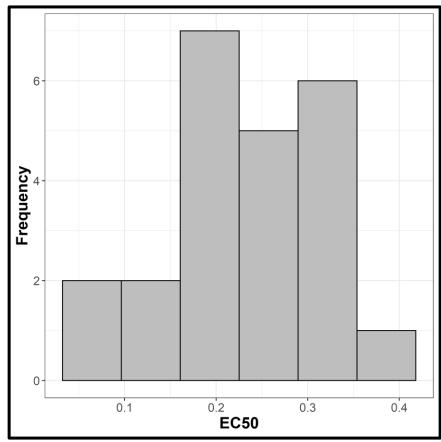


Zenith (Susceptible)



Fungicide resistance in C. janseana

- *In vitro* fungicide sensitivity assays (azoxystrobin and propiconazole)
- ~75% of isolates have G143 mutation
 - Reflect low Qol effectiveness
 - Confirmed with in vitro assay
- No substantial differences in propiconazole sensitivity



Sensitive

Resistant (G143A)

Conclusions and future work

- CRSP2.1 provides robust NBLS resistance in leaves
- Symptoms may form on sheaths/stems of CRSP2.1+ lines
- Quantitative resistance has been identified
- C. janseana has potential to migrate and form novel races
- Multiple races present in LA
- Qol resistance is widespread

Acknowledgements

Richards Lab

Dr. Shankar Gaire Jacob Searight Dr. Asher Tarun Jalecia Owens Gabriel Muñoz Casey Butler

Alejandra Vargas Dablieny Souza Francella Arce

NIFA

LSU AgCenter

Dr. Adam Famoso Dr. Brijesh Angira Dr. Christopher Addison Dr. Tommaso Cerioli **Cornell** Dr. Susan McCouch

Dr. Kelly Robbins

Dr. Chris Hernandez

Funding

United States Department of Agriculture National Institute of Food and Agriculture

USDA-NIFA Project 1025220 Louisiana Rice Research Board