Maximizing Crop Yield: Interpreting Soil Analysis and Understanding Fertility Management in Varying Production Systems

Louisiana Agricultural Technology & Management Conference February 14, 2018

Todd Spivey, Ph.D.

Asst. Professor: Soybean Extension Agronomist LSU AgCenter

Proper Fertility Programs

that has no failed and the state like

• Fertility Management

- 1. Soil Sampling
- 2. Soil Analysis
- 3. Soil Test Interpretation
- 4. Recommendations
- 5. Application

Proper Fertility Programs

and any a failed and her aller the

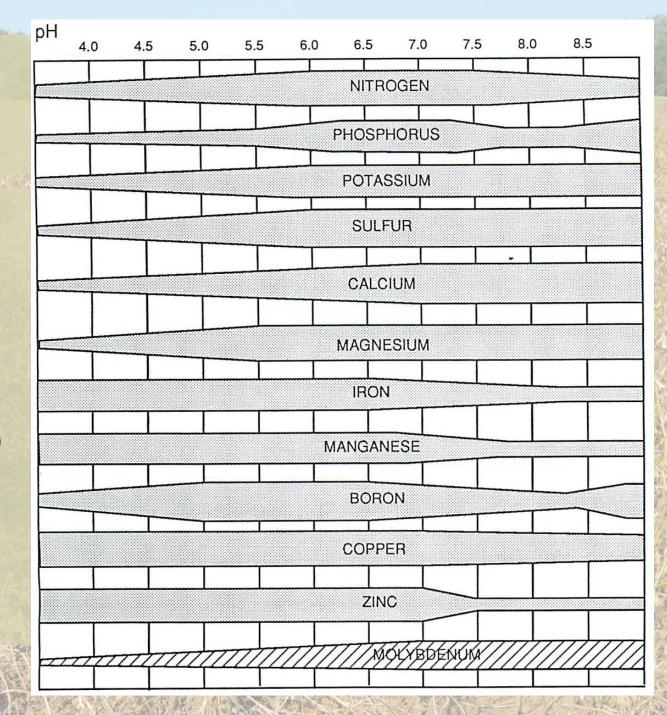
• Fertility Management

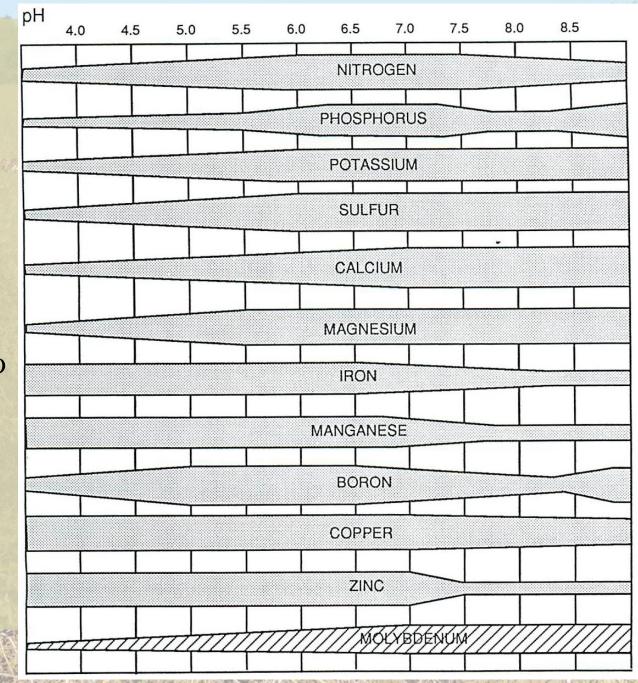
- 1. Soil Sampling
- 2. Soil Analysis
- 3. Soil Test Interpretation
- 4. Recommendations
- 5. Application

pH – negative (-) log of the concentration of hydrogen ions (H⁺)
pH = -log (10⁻⁷) = 7

• More H⁺ = lower pH (This is why NH₄⁺ lowers the pH when reduced to NO₃⁻)

about all a failed and the atter the


- Less H^+ = higher pH
- Suitable pH for most crops typically range from 6 7.5.


• NH₄⁺ volatilization losses increase with increased pH

• Phosphorus

- pH < 5.5 H₂PO₄⁻ forms less soluble compounds with iron (Fe) and aluminum (Al)
- pH >7.5 HPO₄²⁻ forms less soluble compounds with calcium (Ca) and magnesium (Mg)

- Molybdenum Required for nitrogen fixation and becomes increasingly unavailable at pH<6.2
- Iron Fe3+ ions react within hours to become unavailable at pH>7.5
- Toxicity
 - Manganese at pH<5.2
 - Aluminum at pH<5.0

Soil Test pH – Liming Considerations

• Lime quality

- Calcium Carbonate Equivalent (CCE)
- Fineness Factor
- Effective Calcium Carbonate

Calcium Carbonate Equivalent					
Chemical Composition	CCE (%)				
CaCO ₃ (pure)	reference				
CaCO ₃	80-100				
CaMg(CO ₃) ₂	95-100				
Fineness Factor					
Availability					
0.0%					
0.5%					
	Chemical Composition CaCO ₃ (pure) CaCO ₃ CaMg(CO ₃) ₂ Availability				

Soil Test pH – Liming Considerations

- For best results lime should be incorporated to improve distribution and soil-lime contact
- No-Till Lime Applications (Beegle, 1998)
 - Lime applied 3 year intervals at 3 tons A⁻¹
 - Only 0-2" sample was affected with 1 application
 - 4 applications (12 years) was needed to increase pH to adequate levels at 4-6".
 - Fix pH issues before committing to no-till systems

Soil Test Availability: P & K

Soil Test Availability Rating

Rating	Expected Yield Potential	Fertilization
Very Low	<50%	Plant response expected
Low	50-75%	Plant response expected
Medium	75-95%	Plant response expected
High	100%	Fertilization may be needed to maintain "high" rating
Very High	100%	No fertilization needed

Phosphorus

• Soybean requirements

- Removal 0.8 lb P_2O_5 bu⁻¹ A⁻¹
- Total Uptake 1.2 lb P_2O_5 bu⁻¹ A⁻¹

Crop Deficiencies

- Symptoms occur in old growth
- Leaves are dark green or purple color with leaf cupping

has all a state which be added the

- Typically delays bloom and maturity
- Especially noticeable with cool, wet soils

Phosphorus

• $H_2PO_4^-$ is the predominant ion available to plants in acid soils

- pH < 5.5 forms less soluble compounds with iron and aluminum
- HPO_4^{2-} is the predominant ion available in soils at pH > 7
 - pH > 7.5 forms less soluble compounds with calcium and magnesium

that has no failed and the state Has

Phosphorus Retention

• Factors affecting P retention

- pH forms less soluble compounds at both low and high pH with iron and aluminum or calcium and magnesium, respectively
- Soil texture retention most often occurs in clay fraction of soils; precipitation of Fe and Al oxides

there are a state of the state of the

• Time – initial fast reaction; one hour after water-soluble P is added, a weak acid cannot extract most of the P, one year later this amount is even less

Phosphorus

• Minimal-Till

• Broadcast applications will often only increase soil test level P in surface 1" and increase the proportion bound in less soluble compounds

about his an failed and his state the

• Can be banded with small amounts of NH⁴⁺ or sulfur to slightly reduce the pH in the immediate area to improve availability

Potassium

- Soybean requirements
 - Removal 1.4 lb K_2O bu⁻¹ A⁻¹
 - Total Uptake 4 lb K_2O bu⁻¹ A⁻¹
- Soybean Deficiencies
 - Symptoms occur in old growth
 - Interveinal chlorosis and along leaf margins
 - May occur under waterlogged soils, dry soils, or during peak seed fill when K use is maximized late in the season

Photo Credit: University of Missouri Extension

And all a failed and her all the

Potassium

- Fall vs Spring Applications
 - Fall applications should be avoided in coarse-textured soils, especially those with Cation Exchange Capacity (CEC) < 6 meq/100grams
- No-Till Surface applications are effective with little to no incorporation

Depth (inches)	No-Till	Moldboard Plow	
	ppm K		
0-2	170 (47%)	132 (39%)	
2-6	104 (29%)	113 (33%)	
6-12	86 (24%)	95 (28%)	
Blevins et al., 1986			

Soybean Uptake and Removal

Yield Level	Phosphorus (P)		Potass	ium (K)
	<u>Uptake</u>	<u>Removal</u>	<u>Uptake</u>	Removal
40	48	32	160	56
60	72	48	240	84
80	96	64	320	112

Nutrient Removal - Scenario

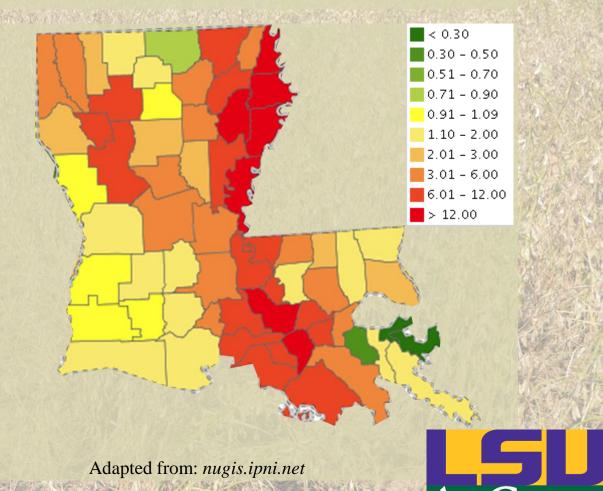
• Corn and Soybean rotation (1:1) – 7 years

	Corn (160 bu A ⁻¹)		Soybean (60 bu A ⁻¹)		
P_2O_5 Ren	noval	K ₂ O Removal	P_2O_5 Removal	K ₂ O Removal	
211 lb .	A ⁻¹	139 lb A ⁻¹	144 lb A ⁻¹	252 lb A ⁻¹	
Total Removal					
P ₂ O ₅		K ₂ O			
355 lb A ⁻¹			391 lb A ⁻¹		
	Soil Test ppm Reduction				
P ₂ O ₅			K ₂ O		
	13 – 30 ppm		25 – 49 ppm		
1/ Salar	X XY YANNY	NYXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX			

Nutrient Removal - Soil Test Range

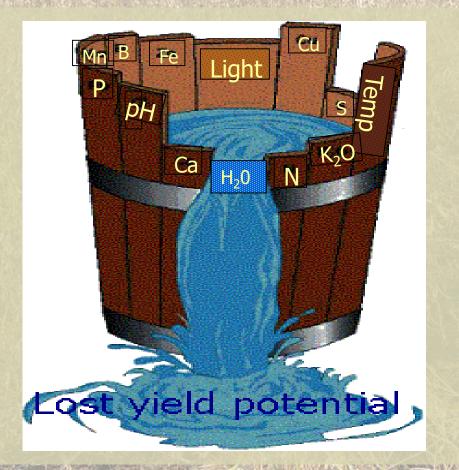
• P_2O_5

12 – 28 lb to raise soil test levels 1ppm 8 – 16 lb to raise soil test levels 1ppm


Soil Test P ratings (Mehlic 3) (ppm/recommendation P ₂ O ₅ lb A ⁻¹)						
	VL		Μ	Н		
	0-10/80	10-20/60	20-35/30	>35/0		
Soil Test K ratings (Mehlic 3) (ppm/recommendation K ₂ O lb A ⁻¹)						
	VL	L	Μ	Н		
Clay-Loam	0-159/80	159-227/60	227-341/30	341-364/0		
Silt-Loam 0-91/80		91-136/60	136-182/30	182-205/0		

• K₂O

Nutrient Removal


- Less than 30% of LA soybean acres received K or P in 2015.
- Top 15 soybean parishes (2012)
 - K Removal:Replacement = 6:1
 - Net Balance = -54 lb $K_2O A^{-1}$

Research · Extension · Teaching

the also is a fill and health the

Maximizing Crop Yield

Our goal is to ensure that the most limiting factor is one out of our control.

there are shall and the attended

Todd Spivey - Contact Information

- Office: (318) 427 4424
 - Cell: (919) 725 1359
- Email: tspivey@agcenter.lsu.edu
- Website: www.lsuagcenter.com/soybeans

