Soil and Tissue Test Based Nutrient Management for Corn, Soybean, and Cotton

Rasel Parvej

Assistant Professor & Soil Fertility Specialist Louisiana State University AgCenter 479-387-2988 mrparvej@agcenter.lsu.edu

THE LOUISIANA Soybean & Grain RESEARCH & PROMOTION BOARD

Most Frequently Asked Questions......

Q1. What is the optimum N rate and timing for 200 bu corn?

Q2. What is the best time to apply P & K – Fall or Spring?

Q3. Can we cut down P & K fertilizer rates and how much?

Q4. Can we fertilize in-season P & K and recover yield losses in low to medium testing soils?

Q5. Is liquid P, K, & S fertilizer better than granular fertilizer?

- How good is our soil-test-based S recommendations?
- Omission trial how do crop inputs interact each other?

Innovate . Educate . Improve Lives

Q1. What is the optimum N rate & timing for corn?

Soil Type	N Rate (lb N/bu)	Target N Rate 2022
Sandy/Silt Loam	1.00	0.8
Clay	1.25	1.0

Why do clay soils need more N?

- 1. Higher CEC fix more applied N
- 2. Complex N uptake route

University of Nebraska

Bender et al. (2012)

Innovate. Educate. Improve Lives

Split N Application

Innovate. Educate. Improve Lives

Sc

V6/7 stage: Rest (28-0-0-5S)

Optimum N Rate & Timing

Soil Type	Yield Goal (bu/acre)	N Rate (lb N/bu)	N Rate 2022	Split Application (Planting – V6/7)	N-Fertilizer Sources
Silt Loam	~200	1.00	0.8	30/45 - 115/130	Planting: 32-0-0
Clay	~200	1.25	1.0	45/60 - 140/155	V7/8: 28-0-0-5S

Do we need starter fertilizer (10-34-0; 5 gal/acre)?

Innovate. Educate. Improve Lives

Collect 15 most n ves with Co 0 to PT sta

Q2. What's the best time to apply P&K? Fall vs. Spring Application

Ag Center

Innovate. Educate. Improve Lives

Fall vs. Spring P & K Application Timings

Corn Yield

Α

170

Rehip

Spring

Innovate. Educate. Improve Lives

Fall vs. Spring P & K Application Considerations

Fall Application

- ✓ Clayey soils with high CEC (>25).
- ✓ Maintenance rate in soils within (medium) or above (sufficient) the critical P & K levels.
- ✓ Fields that have a long history of chloride (Cl) toxicity problems and are poorly drained
 apply K (potash; KCl) to decrease Cl toxicity through winter and early spring rainfall.

Spring Application

- ✓ P and K deficient soils to reduce fixation time and ensure maximum P&K availabilities.
- ✓ Low (pH <5.5) or high (pH >7.5) pH soils apply P in to ensure maximum P availability.
- ✓ Coarse-textured soils with very low CEC (<10) to reduce nutrient leaching and runoff.
- ✓ Soils that are very prone to waterlogged/flooded conditions to ensure availabilities.

Q3. Can we cut down P & K fertilizer rates and how much?

Soil-Testing & Crop Yield Response

Test Meth	nod: <mark>Mehl</mark> i	ch III			Target pH	6.5								
P	к	Mg	Ca	Soil pH Buffer pH	S B		Zn	Mn	Fe	Cu				
Phosphorus	Potassium	lagnesium	Calcium	SMP	Sulfur	Boron	Zinc	Manganese	Iron	Copper				
13.5 L	49 L	163.5 VH	724 H	5.2 6.65	15.5 M	0.4 L	1.6 L	219 VH	181.5 H	1.1 M				
AI	Na	NO3-N	NH4	Soluble Salts	Organic	ENR	Мо	Ni	BiCarbs					
Aluminum	Sodium	Nitrate-N	Ammonia		Matter		Molybdenum	Nickel						
	76				1.65	16.5								
		ppm	ppm	mmhos/cm	%		ppm	ppm	meq/L					
Very High	Soll Analysis Ratings Exchange 12.2 meq/100g Capacity Base Saturation													
, ,							K:	1.0 %	Mg: 1	1.1 %				
High							Ca:	29.6 %	H: 5	5.6 %				
Adequate							Na:	2.7 %						
-			_				-	Base S	Saturation					
Medium										□% K				
Low							-			∎%Mg ⊒%Ca				
			, I				_,			□ %H				
	P I	K Ma	Ca	S B Zn	Mn F	e Cu				= %Na				

Innovate. Educate. Improve Lives

> 60

Very High

Soybean Yield Response to Soil-Test P Concentration

Unfertilized-P Yield

Innovate . Educate . Improve Lives

Soil-Test-Based Phosphorus (P) Recommendations

Soil-test Level	Soil-test P Concentration (ppm)	Unfertilized Yield Loss (%)	Probability of Yield Response (%)	Recommendations Soybean – Corn (Ib P2O5/acre)	Recommendations (Ib P2O5/acre) 2022
Very Low	≤ 10	~20	100	80 – 100	60 – 70 (130-150 lb TSP)
Low	11 – 15	~20	100	60 – 80	46 (100 lb TSP)
Low	16 – 20	~15	63	60 – 80	? or 46 (100 lb TSP)
Madium	21 – 25	~10	25	40 – 60	0
Medium	26 – 35	0-10	17	30 – 40	0
High or Optimum	36 - 60	0	0	0	0
Very High	> 60	0	0	0	0

Innovate. Educate. Improve Lives

Soil-Test Level	Mehlich-3 Soil-Test K Concentration (ppm)											
	Alluvial Soils	Upland Soils										
	Loamy Sand, Sandy L	oam										
Very Low	≤ 35	≤ 35										
Low	36 – 53	36 – 53										
Medium	54 – 79	54 – 88										
High	80 - 123	89 – 106										
Very High	> 123	> 106										
Very Fine Sandy Loam, Fine Sandy Loam												
Very Low	≤ 53	≤ 44										
Low	54 – 88	45 – 70										
Medium	89 – 123	71 – 106										
High	124 – 141	107 – 123										
Very High	> 141	> 123										
Loam, Silt Loam												
Very Low	≤ 70	≤ 62										
Low	71 – 106	63 – 97										
Medium	107 – 141	98 – 141										
High	142 – 158	142 – 158										
Very High	> 158	> 158										
	Clay Loam, Silty Clay I	Loam										
Very Low	≤ 123	≤ 88										
Low	124 – 176	89 – 141										
Medium	177 – 264	142 – 176										
High	265 – 282	177 – 194										
Very High	> 282	> 194										
	Silty Clay, Clay											
Very Low	≤ 141	≤ 88										
Low	142 – 211	89 – 141										
Medium	212 – 317	142 – 176										
High	318 - 334	177 – 194										
Very High	> 334	> 194										

Soybean Yield Response to Soil K Concentration

Innovate . Educate . Improve Lives

Soil-Test-Based Potassium (K) Recommendations

Soil-test Level	Soil-test K Concentration (ppm)	Unfertilized Yield Loss (%)	Probability of Yield Response (%)	Recommendations Soybean – Corn (Ib K2O/acre)	Recommendations (Ib K2O/acre) 2022		
Very Low	≤ 50	~40	100	100 – 120	80 – 90 (130-150 lb Potash)		
Low	51 – 75	~35	100	80 – 100	60 - 70 (100-117 lb Potash)		
Low	76 – 100	~25	100	60 – 80	40 – 60 (67-100 lb Potash)		
Modium	101 – 125	~10	50	40 – 60	0		
Wedium	126 – 150	0	0	30 – 40	0		
High or Optimum	151 – 250	0	0	0	0		
Very High	> 250	0	0	0	0		

Innovate. Educate. Improve Lives

Soil-test	Soil-test K Conc	Soil-test K Concentration (ppm)										
Level	Alluvial Soils	Upland Soils	(lb K2O acre ⁻¹)									
	Loamy Sa	nd, Sandy Loam										
Very Low	≤ 35	≤ 35	80									
Low	36 – 53	36 – 53	60									
Medium	54 – 79	54 – 88	30									
High	80 - 123	89 – 106	0									
Very High	> 123	> 106	0									
Very Fine Sandy Loam, Fine Sandy Loam												
Very Low	≤ 53	≤ 44	80									
Low	54 – 88	45 – 70	60									
Medium	89 – 123	71 – 106	30									
High	124 - 141	107 – 123	0									
Very High	> 141	> 123	0									
Loam, Silt Loam												
Very Low	≤ 70	≤ 62	80									
Low	71 – 106	63 – 97	60									
Medium	107 – 141	98 - 141	30									
High	142 – 158	142 – 158	0									
Very High	> 158	> 158	0									
	Clay Loam	, Silty Clay Loam										
Very Low	≤ 123	≤ 88	80									
Low	124 – 176	89 - 141	60									
Medium	177 – 264	142 – 176	30									
High	265 – 282	177 – 194	0									
Very High	> 282	> 194	0									
	Silty	y Clay, Clay										
Very Low	≤ 141	≤ 88	80									
Low	142 - 211	89 - 141	60									
Medium	212 - 317	142 – 176	30									
High	318 - 334	177 – 194	0									
Very High	> 334	> 194	0									

K-Rate Recommendations Heads-up

Soil-test Level	Soil-test K Concentration (ppm)	Recommendations
	All Soil Types	(lb K2O acre ⁻¹)
Very Low	≤ 60	160
Low	61 - 90	120
Medium	91 – 130	60
Optimum	131 – 175	50
Very High	> 175	0

University of Arkansas

Innovate. Educate. Improve Lives

Soil-Test K Conc. vs. K Saturation for K Recommendations Which one is more important?

Custome	er: 65829											
LSU AG CE M.D. RASEL 212A MACC WINNSBOR UNITED ST.	NTER _ PRAVEJ DN RIDGE RC 20, LA 71295 ATES	DAD		Grov Farm Field Lab Num Laye	PARVEJ PARVEJ SM			Re Pro	ceived: 8/19 cessed: 8/23	/2021 /2021		
Test Met	100 bi	ch III		Soi	Laborato	ry Data (p		Target pH 6.5				
P	к	Mg	Ca	Soil pH	Buffer pH	S	в	Zn	Mn	Fe	Cu	
Phosphous	Potassium	Mynesium	Calcium		SMP Sulfur Boron		Boron	Zinc	Manganese	Iron	Copper	
14.5	189 H	517 VH	4646 VH	7.8	7.45	10 L	1.2 H	1.95 L	193 H	99.5 A	4.1 H	
AI	Чa	NO3-N	NH4	Solub	le Salts	Organic Matter	ENR	Мо	Ni	BiCarbs		
Aluminum	Sodium	Nitrate-N	Ammonia			Watter		Molybdenum	Nickel			
	20.5					1.23	12.5					
		ppm	ppm	mmł	nos/cm	%		ppm	ppm	meq/L		

Customer: 65829	Sample ID: 1346							
LSU AG CENTER	Grower: RASEL PARVEJ	Received: 8/19/2021						
M.D. RASEL PRAVEJ	Farm ID: RASEL PARVEJ	Processed: 8/23/2021						
212A MACON RIDGE ROAD	Field ID:							
WINNSBORO, LA 71295	Lab Number: 870231SM							
UNITED STATES	Layer ID:							

Test Methoda Soil Labora											aborato	ory Data (ppm)								Target pH 6.5				
Р		К	N	Mg			Ca	I	Soi	Soil pH Buffer pH		S		в		Zn		Mn		Fe		Cu		
Phospho	IS	Potassium	Minesium		0	Calcium					SMP	Sulfur		Bor	on Zinc		с	Manga	nese	Iron		Copper		
15		91 M		97	VH	'H 1094 VH		6	.1		7.30	6.5	Г	0.4	L	1.2	L	25	М	172	Н	1.4	М	
AI			N	0	3-N		NH4		Sc	Soluble Salts		e Salts Orga		nic ter	EN	R	М	0	N	li	BiCa	rbs		
Aluminun	n	Sodium	1	Nitra	te-N	A	mmo	nia					mat				Molybdenum		Nickel					
		20.5										0.5	9	6										
				pp	m		ррп	n		mmhos/cm		%	%		ppm		ppm		meq/L					

Innovate. Educate. Improve Lives

Soil-Test K Concentration vs. K Saturation

Unfertilized-K Yield

Innovate . Educate . Improve Lives

Q3. Can we fertilize in-season P & K and recover yield losses?

K deficiency

Innovate . Educate . Improve Lives

Low P & K soils with no deficiency symptom – Hidden Hunger

Tissue Sampling

Collect 15 – 20 uppermost recently mature leaves

<u>Soybean</u>

Full bloom (R2) stage

<u>Corn</u> V10-12 (pre-tassel) stage

Critical Tissue P & K Concentrations in Soybean & Corn

ente

Deficiency Management: Seasonal P & K Uptake by Soybean and Corn

AgCenter

Innovate . Educate . Improve Lives

In-Season P & K Deficiency Management in Soybean

70 100% **96%** -61,9-<u>-59.2</u> 60 84% 52 Soybean Yield (bu/acre) 0 0 0 0 0 0 0 72% 44.5 10 0 60 90 60 0 Check **Pre-Plant Pre-Plant** R3-Stage **P** Fertilization Treatment

P study: silty clay loam (soil-P: 19 ppm)

K study: silt loam (soil-K: 28 ppm)

Innovate . Educate . Improve Lives

In-Season P & K Deficiency Management in Corn

Soil-P: 16 ppm & Soil-K: 60 ppm

Innovate. Educate. Improve Lives

In-Season P & K Application in Medium Testing Soils

P study: clay (soil-P: 31 ppm)

K study: silt loam (soil-K: 124 ppm)

Innovate. Educate. Improve Lives

In-Season Fertilization Consideration

- ✓ Fields with soil-test P and/or K conc. below critical levels.
- ✓ Fields haven't received any pre-plant P & K fertilization.
- ✓ Make sure no drought stress during the growing season.
- ✓ Collect leaf tissue sample at the specific growth stage.
 - Soybean leaf-K at full bloom (R2) stage: 1.5 1.9% K
 - Corn leaf-K at V10-12 (pre-tassel) stage: 1.5 2.0% K
- ✓ Recommendations: Top-dress at least 60 lb K2O/acre (100 lb Potash) and/or 46 lb P2O5/acre (100 lb TSP).

Q5. Is liquid P & K fertilizer better than dry fertilizer?

Year & Location: 2021

- ✓ Macon Ridge and Northeast Research Station
- ✓ Silt Loam Soils
- Dry source:
 - ✓ P: TSP (0-46-0)
 - ✓ K: Potash (0-0-60)

Liquid source:

- ✓ P: Ammonium PolyPhosphate (11-37-0)
- ✓ K: Nachurs K-Fuel (0-0-24)

Fertilizer Rate:

- ✓ Half-Rate (0.5x): 40 lb P_2O_5 and K_2O per acre
- ✓ Full-Rate (1.0x): 80 lb P_2O_5 and K_2O per acre

Dry vs. Liquid P & K Fertilizers in Corn

Soil-P: 16 ppm & Soil-K: 60 ppm

Innovate . Educate . Improve Lives

Dry vs. Liquid P & K Fertilizers in Soybean

Soil-P: 26 ppm & Soil-K: 112 ppm

Innovate. Educate. Improve Lives

Dry vs. Liquid S Fertilizers

How good is our soil-test-based S recommendations?

Innovate. Educate. Improve Lives

What S source should we use for soybean?

Silty clay loam (Soil-S: 11 ppm)

Silt loam (Soil-S: 13 ppm)

enter

Innovate . Educate . Improve Lives

Take home messages

- 1. N fertilizer needs to be applied in at least 2 splits for optimizing yield with reduced N rate.
- 2. Tissue testing from the V10 to pre-tassel stages can accurately predict pre-tassel N needs.
- 3. Spring fertilization of P and K is equal or better than fall fertilization in Low testing soils.
- 4. Invest money on soil testing rather than fertilizing field without knowing the yield response.
- 5. In-season fertilization on low testing fields is a viable option to correct P & K deficiencies.
- 6. Spend money on core fertilizers rather than different soil amendments/unknown products.
- 7. Ammonium sulfate may not be a good option for fulfilling sulfur requirements in soybean.

Innovate . Educate . Improve Lives

Thank You

Rasel Parvej

THE LOUISIANA

Soybean & Grain

RESEARCH & PROMOTION BOARD

Assistant Professor & Soil Fertility Specialist Louisiana State University AgCenter 479-387-2988 mrparvej@agcenter.lsu.edu

